Layered Manufacturing can build functional “smart” parts with sensors, integrated circuits, complete functional assemblies, and actuators placed within the structure and fully embedded. These sensors can be used to gain data for validating or improving designs during the prototype stage or to obtain information on the performance and structural integrity of functional components in service. A sequence for embedding fiber optic sensors in metals via Layered Manufacturing is developed. Fiber Bragg Grating (FBG) sensors, embedded in nickel and stainless steel were characterized for temperature and strain measurements. Moreover, a decoupling technique that is capable of separating temperature and strain effects was also developed. This paper also presents the application of the embedded sensors to monitor residual strains during laser-assisted Layered Manufacturing.

1.
Prinz, F. B., chair, 1997, “Process Overviews,” Rapid Prototyping in Europe and Japan, Vol. I, Analytical Chapters, International Technology Research Institute, Loyola College in Maryland, March.
2.
Au, S., and Wright, P. K., 1993, “A Comparative Study of Rapid Prototyping Technology,” Intelligent Concurrent Design: Fundamentals, Methodology, Modeling, and Practice, DE-vol. 66, ASME, New Orleans, Louisiana, November/December, pp. 73–82.
3.
Barkan, P., and Iasiti, M., 1993, “Prototyping: A Tool for Rapid Learning in Product Development,” Concurrent Engineering: Research and Applications 1, pp. 125–134.
4.
Ashley
,
S.
,
1995
, “
Rapid Prototyping is Coming of Age
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
117
(7), July, p.
66
66
.
5.
Marcus, H. L., Harrison, S., and Crocker, J., 1996, “Solid Freeform Fabrication: An Overview,” American Society of Mechanical Engineers, Manufacturing Engineering Division, MED, v.4, 1996, pp. 3–9.
6.
Conley
,
J. G.
, and
Marcus
,
H. L.
,
1997
, “
Rapid Prototyping and Solid Freeform Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
119
(4B), November, pp.
811
816
.
7.
Ashley
,
S.
,
1997
, “
From CAD Art to Rapid Metal Tools
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
119
(3), March, pp.
82
87
.
8.
Beaman, J. J., Barlow, J. W., Bourell, D. L., Crawford, R. H., Marcus, H. L., and McAlea, K. P., 1997, Solid Freeform Fabrication-A New Direction in Manufacturing, Kluwer Academic Publishers.
9.
Nau, W. H., 1991, “Embedding Sensors Using Stereolithography,” Master of Science Thesis, Clemson University, Clemson, South Carolina.
10.
Danforth, S. C., and Safari, A., 1996, “Solid Freeform Fabrication: Novel Manufacturing Opportunities for Electronic Ceramics,” IEEE International Symposium on Applications of Ferroelectrics, Vol. 1, pp. 183–188.
11.
Safari, A., and Danforth, S. C., 1998, “Development of Novel Piezoelectric Ceramics and Composites for Sensors and Actuators by Solid Freeform Fabrication,” IEEE International Symposium on Applications of Ferroelectrics, pp. 229–234.
12.
Safari, A., Danforth, S. C., Kholkin, A. L., Cornejo, I. A., Mohammadi, F., McNulty, T., and Panda, R., 1999, “Processing of Novel Electroceramic Components by SFF Techniques,” Materials Research Society Symposium-Proceedings, Vol. 542, pp. 85–96.
13.
Bandyopadhyay
,
A.
,
Panda
,
R. K.
,
McNulty
,
T. F.
,
Mohammadi
,
F.
,
Danforth
,
S. C.
, and
Safari
,
A.
,
1998
, “
Piezoelectric Ceramics and Composites via Rapid Prototyping Techniques
,”
Rapid Prototyping J.
,
4
(
1
), pp.
37
49
.
14.
Denham, H., George, G., Rintoul, L., and Calvert, P., 1996, “Fabrication of Polymers and Composites Containing Embedded Sensors,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 2779, pp. 742–747.
15.
Denham, H. B., Anderson, T. A., Madenci, E., and Calvert, P. D., 1997, “Embedded PVF2 Sensors for Smart Composites,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 3040, pp. 138–147.
16.
Calvert, P., Denham, H., and Anderson, T., 1999, “Freeform Fabrication of Composites with Embedded Sensors,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 3670, pp. 128–133.
17.
Sun
,
L.
,
Jakubenas
,
K. J.
,
Crocker
,
J. E.
,
Harrison
,
S.
,
Shaw
,
L. L.
, and
Marcus
,
H. L.
,
1998
, “
In Situ Thermocouples in Macro-components Fabricated Using SALD and SALDVI Techniques. I. Thermochemical Modeling
,”
Mater. Manuf. Processes
,
13
(6), November, pp.
859
882
.
18.
Sun
,
L.
,
Jakubenas
,
K. J.
,
Crocker
,
J. E.
,
Harrison
,
S.
,
Shaw
,
L. L.
, and
Marcus
,
H. L.
,
1998
, “
In Situ Thermocouples In Macro-components Fabricated Using SALD and SALDVI Techniques. II. Evaluation of Processing Parameters
,”
Mater. Manuf. Processes
,
13
(
6
), pp.
883
907
.
19.
Sun
,
L.
,
Jakubenas
,
K. J.
,
Crocker
,
J. E.
,
Harrison
,
S.
,
Shaw
,
L. L.
, and
Marcus
,
H. L.
,
1998
, “
In Situ Thermocouples in Macro-components Fabricated Using SALD and SALDVI Techniques. III. Fabrication and Properties of the SiC/C Thermocouple Device
,”
Mater. Manuf. Processes
,
13
(6), November, pp.
909
919
.
20.
Sun
,
L.
, and
Shaw
,
L. L.
,
1999
, “
Solid Freeform Fabrication of In-situ SiC/C Thermocouples in Macrocomponents
,”
Metall. Mater. Trans. A
,
30
(9), September, pp.
2549
2552
.
21.
Weiss
,
L. E.
,
Merz
,
R.
,
Prinz
,
F. B.
,
Neplotnik
,
G.
,
Padmanabhan
,
P.
,
Schultz
,
L.
, and
Ramaswami
,
K.
,
1997
, “
Shape Deposition Manufacturing of Heterogeneous Structures
,”
J. Manuf. Syst.
,
16
(4), June, pp.
239
248
.
22.
Golnas, Tassos, 1999, “Thin-film Mechanical Sensors Embedded in Metallic Structures,” Ph.D. Thesis, Stanford University, December.
23.
Li, X. C., Golnas, A., and Prinz, F., 2000, “Shape Deposition Manufacturing of Smart Metallic Structures with Embedded Sensors,” Proceedings of SPIE-The International Society for Optical Engineering, Vol. 3986, pp. 160–171.
24.
Cham, J. G., Pruitt, B. L., Cutkosky, M., Binnard, M., Weiss, L. E., and Neplotnik, G., 1999, “Layered Manufacturing with Embedded Components: Process Planning Considerations,” Proceedings of DETC99: 1999 ASME Design Engineering Technical Conference, Las Vegas, NV, September 12–15.
25.
Bailey, S. A., Cham, J. G., Cutkosky, M., and Full, R., 1999, “Biomimetic Robotic Mechanisms via Shape Deposition Manufacturing,” 9th International Symposium of Robotics Research, Snowbird, Utah, October 9–12, pp. 321–327.
26.
Udd, E., 1995, Fiber Optic Smart Structures, Wiley (Interscience), New York.
27.
Lawrence, C. M., 1997, “Embedded Fiber Optic Strain Sensors for Process Monitoring of Composites,” Ph.D thesis, Stanford University.
28.
Foedinger, R., Rea, D., Sirkis, J., Wagreich, R., Troll, J., Grande, R., Davis, C., and Vandiver, T. L., 1998, “Structural Health Monitoring of Filament Wound Composite Pressure Vessels with Embedded Optical Fiber Sensors,” International SAMPE Symposium and Exhibition-Proceedings, Vol. 43, No. 1, pp. 444–457
29.
Kim
,
K.
,
Breslauer
,
M.
, and
Springer
,
G. S.
,
1992
, “
Effect of Embedded Sensors on the Strength of Composite Laminates
,”
J. Reinf. Plast. Compos.
,
11
(8), Aug., pp.
949
958
.
30.
Jin
,
X. D.
,
Sirkis
,
J. S.
,
Chung
,
J. K.
, and
Venkat
,
V. S.
,
1998
, “
Embedded In-line Fiber etalon/Bragg Grating Hybrid Sensor to Measure Strain and Temperature in a Composite Beam
,”
J. Intell. Mater. Syst. Struct.
,
9
(3), March, pp.
171
181
.
31.
Murukeshan
,
V. M.
,
Chan
,
P. Y.
,
Ong
,
L. S.
, and
Seah
,
L. K.
,
2000
, “
Cure Monitoring of Smart Composites Using Fiber Bragg Grating Based Embedded Sensors
,”
Sens. Actuators A
,
79
(
2
), pp.
153
161
.
32.
Murukeshan
,
V. M.
,
Chan
,
P. Y.
, and
Ong
,
L. S.
,
2001
, “
Intracore Fiber Bragg Gratings for Strain Measurement in Embedded Composite Structures
,”
Appl. Opt.
,
40
(1), Jan., pp.
145
149
.
33.
Hill
,
K. O.
,
Fujii
,
Y.
,
Johnson
,
D. C.
, and
Kawasaki
,
B. S.
,
1978
, “
Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication
,”
Appl. Phys. Lett.
,
32
, pp.
647
649
.
34.
Kawasaki
,
B. S.
,
Hill
,
K. O.
,
Johnson
,
D. C.
, and
Fuji
,
Y.
,
1978
, “
Narrow-band Bragg Reflections in Optical Fibers
,”
Opt. Lett.
,
3
, pp.
66
68
.
35.
Othonos, A., and Kalli, K., 1999, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing, Artech House, Boston.
36.
Kersey
,
A. D.
,
Davis
,
M. A.
,
Patrick
,
H. J.
,
LeBlanc
,
M.
,
Koo
,
K. P.
,
Askins
,
C. G.
,
Putnam
,
M. A.
, and
Friebele
,
E. J.
,
1997
, “
Fiber Grating Sensors
,”
J. Lightwave Technol.
,
15
, pp.
1442
1463
.
37.
Reid
,
M.
,
1998
, “
Temperature Dependence of Fiber Optic Bragg Gratings at Low Temperature
,”
Opt. Eng.
,
37
(
1
), p.
237
237
.
38.
Lin
,
G.
,
Wang
,
L.
,
Yang
,
C. C.
,
Shih
,
M. C.
, and
Chuang
,
T. J.
,
1998
, “
Thermal Performance of Metal-clad Fiber Bragg Grating Sensors
,”
IEEE Photonics Technol. Lett.
,
10
(
3
), p.
406
406
.
39.
Wagreich
,
R. B.
,
Atia
,
W. A.
,
Singh
,
H.
, and
Sirkis
,
J. S.
,
1996
, “
Effects of Diametric Load on Fiber Bragg Gratings Fabricated in Low Birefringent fiber
,”
Electron. Lett.
,
26
(
6
), pp.
1223
1224
.
40.
Kim, K. S., 1992, “A Model of Embedded Fiber Optic Fabry-Perot Temperature and Strain Sensors,” Ph.D Dissertation, Stanford University.
41.
Van Steenkiste, R. J., 1995, “Theory of Fiber Optic Strain and Temperature Sensors,” Ph.D. Dissertation, Stanford University.
42.
Taylor, H. F., and Lee, C. E., 1993, “Sensing Applications of Fiber Fabry-Perot Interferometers Embedded in Composites and in Metals,” Experiments in Smart Materials and Structures, ASME, AMD-vol. 181, p. 47.
43.
Lee, C. E., Alcoz, J. J., Gibler, W., Atkins, R. A., and Taylor, H. F., 1991, “Method for Embedding Optical Fibers and Optical Fiber Sensors in Metal Parts and Structures,” Fiber Optic Smart Structures and Skins IV (SPIE Vol. 1588), p. 110.
44.
Baldini, S. E., Tubbs, D. J., and Stange, W. A., 1990, “Embedding Fiber Optic Sensors in Titanium Matrix Composites,” Fiber Optic Smart Structures and Skins III (SPIE Vol. 1370), p. 162.
45.
Li, X. C., 2001, “Embedded Sensors in Layered Manufacturing,” Ph.D. dissertation, Stanford University, CA.
46.
Nickel, A., 1999, “Analysis of Thermal Stresses in Shape Deposition Manufacturing of Metal Parts,” Ph.D. Thesis, Stanford University, August.
You do not currently have access to this content.