Application of conventional cutting fluids do not serve the purposes effectively particularly under high cutting velocity and feed. Besides, such cutting fluids pollute the environment in high production machining and grinding. Cryogenic cooling seemed to be quite effective in reducing the high cutting temperature which impairs product quality and reduces tool life. The present work deals with investigating the role of cryogenic cooling by liquid nitrogen jet on cutting temperature in turning plain carbon steel (C-40) under varying cutting velocity and feed. The experimental and computational results indicate that such cryogenic cooling enables substantial reduction in the cutting temperature depending upon the levels of the cutting velocity and feed and the cutting tool geometry. It was also noted that the chip formation and chip-tool interaction become more favorable and the cutting forces decreased to some extent when liquid nitrogen jet was employed. Therefore, it appears that cryogenic cooling, if properly employed, not only provides environment friendliness but can also improve the machinability characteristics.

1.
Shaw
,
M. C.
,
Pigott
,
J. D.
, and
Richardson
,
L. P.
,
1951
, “
The Effect of Cutting Fluid upon Chip-Tool Interface Temperature
,”
Trans. ASME
,
71
, pp.
45
56
.
2.
Merchant, M. E., 1958, “The Physical Chemistry of Cutting Fluid Action,” Am. Chem. Soc., Div. Petrol Chem., Preprint 3, No. 4A, pp. 179–189.
3.
Cassin
,
C.
, and
Boothroyed
,
G.
,
1965
, “
Lubrication Action of Cutting Fluids
,”
J. Mech. Eng. Sci.
,
7
(
1
), pp.
67
81
.
4.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High Speed Machining of Inconel 718 and Ti-6V-2Sn
,”
Wear
,
202
, pp.
142
148
.
5.
Mazurkiewicz
,
M.
,
1989
, “
Metal Machining with High-Pressure Water-Jet Cooling Assistance—A New Possibility
,”
ASME J. Eng. Ind.
,
111
, pp.
7
12
.
6.
Singamneni, S. B., 1993, “Role of Controlled Contact Cutting on the Mechanism and Mechanics of Chip Formation and the Induced Stresses in Turning Carbide Inserts,” Doctoral Dissertation, Mech. Eng. Dept., IIT Kharagpur.
7.
Grabner, T., and Tonshoff, H. K., 1984, Proc. 5th ICPE, Tokyo, pp. 326–343.
8.
Ecologically Improved Manufacturing Processes at home page http://www.ifw.uni-hannover.de/BEREICH3/Forschen/310_2e.htm
9.
Farook, A., Varadarajan, A. S., and Philip, P. K., 1998, “Machinability Studies on Steel Using Hard Metal Inserts with Soft Material Deposit,” Proc. 18th All India Conf. MTDR, pp. 152–155.
10.
Alaxender, A., Varadarajan, A. S., and Philip. P. K., 1998, “Hard Turning with Minimum Cutting Fluid: A Viable Green Alternative on the Shop Floor,” Proc. 18th All India Conf. MTDR, pp. 152–155.
11.
Thoors, H., and Chandrasekaran, H., 1994, “Influence of the Cutting Medium on Tool Wear during Turning,” Swedish Institute for Metal Research, Report No IM-3118.
12.
Chattopadhyay
,
A. B.
,
Bose
,
A.
, and
Chattopadhyay
,
A. K.
,
1985
, “
Improvements in Grinding Steels by Cryogenic Cooling
,”
Precis. Eng.
,
7
, No
2
, pp.
93
93
.
13.
Banerjee, A., and Chattopadhyay, A. B., 1985, “Control of Residual Stress in Grinding by Cryogenic Cooling,” Proceedings of INCONCRYO’85, pp. 78–48.
14.
Paul, S., 1994, “Performance of Cryogenic Grinding over Conventional Grinding,” Doctoral Dissertation, Dept. of Mech. Eng., IIT, Kharagpur, India.
15.
Bhattacharya, A., Roy, T. K., and Chattopadhyay, A. B., 1972, “Application of Cryogenic in Metal Machining,” J. of Institution of Engs, India.
16.
Uhera
,
K.
, and
Kumagai
,
S.
,
1968
, “
Chip Formation, Surface Roughness, Cutting Forces and Tool Wear in Cryogenic Machining
,”
CIRP Ann.
,
17
(
1
), pp.
409
416
.
17.
Uhera
,
K.
, and
Kumagai
,
S.
,
1969
, “
Mechanisms of Tool Wear
,”
J. of Japanese Society of Precision Eng.
,
35
(
9
), pp.
43
49
.
18.
Fillippi
,
A. D.
, and
Ippolito
,
R.
,
1970
, “
Face Milling at 180°C
,”
CIRP Ann.
,
19
(
1
), pp.
399
406
.
19.
Evans
,
C.
,
1991
, “
Cryogenic Diamond Turning of Stainless Steel
,”
CIRP Ann.
,
40/1
, pp.
571
575
.
20.
Bhattacharya
,
S. K.
, and
Moffatt
,
V. L.
,
1976
, “
Characteristics of Micro Wheel Wear in Grinding
,”
Int. J. MTDR.
,
16
, pp.
325
325
.
21.
Ding
,
Y.
, and
Hong
,
S. Y.
,
1998
, “
Improvement of Chip Breaking in Machining Low Carbon Steel by Cryogenically Precooling the Workpiece
,”
Trans. ASME
,
120
, pp.
76
83
.
22.
Hong, S., Qu, X., and Lee, A., “Economical Cryogenic Milling for Environmentally Safe Manufacturing,” Technical Papers of the North American Manufacturing Research Institute of SME at home page http://www.columbia.edu/∼ahl21/index2.html.
23.
Wang
,
Z. Y.
, and
Rajurkar
,
K. P.
,
1997
, “
Wear of CBN Tool in Turning of Silicon Nitride With Cryogenic Cooling
,”
Int. J. Mach. Tools Manuf.
,
37
, pp.
319
326
.
24.
Wang
,
Z. Y.
,
Rajurkar
,
K. P.
, and
Murugappan
,
M.
,
1996
, “
Cryogenic PCBN Turning of Ceramic Si3N4,
Wear
,
195
, pp.
1
6
.
25.
Jawahir
,
I. S.
, and
van Luttervelt
,
C. A.
,
1993
, “
Recent Development in Chip Control Research and Application
,”
CIRP Ann.
,
42/2
, pp.
659
693
.
26.
Shore
,
H.
,
1925
, “
Thermoelectric Measurement of Cutting Tool Temperature
,”
J. Wash. Acad. Sci.
,
15
, pp.
85
88
.
27.
Bus, C., Tuuwen, A. L., Veenstra, P. C., and Van Der Wolf, A. C. H., 1971, “Thermoelectric Characteristics of Carbides,” Proc. of the 12th Int. Machine Tool Design and Research Conference, pp. 397–400.
28.
Byrne
,
G.
,
1987
, “
Thermoelectric Signal Characteristics and Average Interfacial Temperature in the Machining of Metals under Geometrically Defined Conditions
,”
Int. J. Mach. Tools Manuf.
,
27
, pp.
215
224
.
29.
Alvelid
,
B.
,
1970
, “
Cutting Temperature Thermo-electric Measurements
,”
CIRP Ann.
,
18
, pp.
547
554
.
30.
Barrow
,
G.
,
1973
, “
A Review of Experimental and Theoretical Techniques for Assessing Cutting Temperatures
,”
CIRP Ann.
,
22
, pp.
203
211
.
31.
Braiden, P. M., 1967, “The Calibration of Tool-work Thermocouples,” Proc. of the 8th Int. MTDR Conf., pp. 653–666.
32.
Shaw, M. C., 1984, Metal Cutting Principles, Clarendon Press, Oxford University Press, pp. 284–287.
33.
Leshock
,
C. E.
, and
Shin
,
Y. C.
,
1997
, “
Investigation on Cutting Temperature in Turning by a Tool-work Thermocouple Technique
,”
Trans. ASME
,
119
, pp.
502
508
.
34.
Chow
,
J. G.
, and
Wright
,
P. K.
,
1988
, “
On-line Estimation of Tool/Chip Interface Temperatures for a Turning Operations
,”
ASME J. Eng. Ind.
,
110
, pp.
56
64
.
35.
Hahn, R. S., 1951, “On the Temperature Developed at the Shear Plane in the Metal Cutting Processes,” Proc. U. S. Nat. Congress of Applied Mechanics, ASME, pp. 661.
36.
Loewen
,
E. G.
, and
Shaw
,
M. C.
,
1954
, “
On the Analysis of Cutting Tool Temperature
,”
Trans. ASME
,
76
, pp.
217
231
.
37.
Weiner
,
J. H.
,
1955
, “
Shear-Plane Temperature Distribution in Orthogonal Cutting
,”
Trans. ASME
,
77
, pp.
1331
1331
.
38.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
Davis
,
G. V.
,
1974
, “
Using the Finite Element Method to Determine Temperature Distribution in Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
188
, pp.
627
638
.
39.
Tay
,
A. O.
,
Stevenson
,
M. G.
,
Davis
,
G. V.
, and
Oxley
,
P. L. B.
,
1976
, “
A Numerical Method for Calculating Temperature Distribution in Machining from Force and Shear Angle Measurements
,”
Int. J. Mach. Tool Des. Res.
,
16
, pp.
335
349
.
40.
Stevenson
,
M. G.
,
Wright
,
P. K.
, and
Chow
,
J. G.
,
1983
, “
Further Developments in Applying the Finite Element Method to the Calculation of Temperature Distributions in Machining and Comparisons with Experiment
,”
ASME J. Eng. Ind.
,
105
, pp.
149
154
.
41.
Muraka
,
P. D.
,
Barrow
,
G.
, and
Hinduja
,
S.
,
1979
, “
Influence of the Process Variables on the Temperature Distribution in Orthogonal Machining using the Finite Element Method
,”
Int. J. Mach. Tool Des. Res.
,
21
, pp.
445
445
.
42.
Strenskovski
,
J. S.
, and
Kyung-jin
,
Moon
,
1990
, “
Finite Element Prediction of Chip Geometry and Tool and Workpiece Temperature Distributions in Orthogonal Cutting
,”
ASME J. Eng. Ind.
,
112
, pp.
313
318
.
43.
Ostafiev
,
V. A.
, and
Noschenko
,
A. N
,
1985
, “
Numerical Analysis of Three Dimensional Heat Exchange in Oblique Cutting
,”
CIRP Ann.
,
34
, pp.
137
140
.
44.
Kagiwada, T., and Canonic, T., 1988, “Numerical Analysis of Cutting Temperature and Flowing Ratios of Generated Heat,” ASME Int. Thermal, Series III, Vol. 31, No. 3, pp. 624.
45.
Nashchokin, V. V., 1979, Engineering Thermodynamics and Heat Transfer, MIR Publisher, Moscow, USSR.
46.
Barron, R. F., 1985, Monographs on Cryogenic 3: Cryogenics System, 2nd Ed., Oxford Univ. Press, N. Y., USA.
47.
Rothman, M. F., 1988, High Temperature Property Data: Ferrous Alloy, Metal Park, OH 44073, USA.
48.
Kato, S., Yamaguchi, K., and Yamada, M., 1972, “Stress Distribution at the Interface Between Tool and Chip in Machining,” ASME J. Eng. Ind., pp. 683.
49.
Barrow
,
G.
,
Graham
,
W.
,
Kurimoto
,
T.
, and
Leong
,
Y. F.
,
1982
, “
Determination of Rake Face Stress Distribution in Orthogonal Machining
,”
Int. J. Mach. Tool Des. Res.
,
22
, pp.
75
75
.
50.
Chen
,
N. N. S.
, and
Pun
,
W. K.
,
1988
, “
Stresses at the Cutting Tool Wear Land
,”
Int. J. Mach. Tools Manuf.
,
28
, No.
2
, pp.
79
79
.
51.
Childs
,
T. H. C.
,
Mahdi
,
M. I.
, and
Barrow
,
G.
,
1989
, “
On the Stresses Between the Chip and Tool During Metal Turning
,”
CIRP Ann.
,
38
,
1
, pp.
55
55
.
52.
Stephenson, D. A., and Agapiou, J. S., 1997, Metal Cutting Theory and Practice, New York, pp. 425.
53.
Bhattacharyya, A., 1965, “On the Friction Process in Metal Cutting,” Proc. 6th Int. Conf. on MTDR, Manchester, UK, pp. 491–505.
54.
Lo Casto
,
S.
,
Lo Valvo
,
E.
, and
Micari
,
F.
,
1989
, “
Measurement of Temperature Distribution within Tools in Metal Cutting. Experimental Tests and Numerical Results
,”
J. Mech. Work. Technol.
,
20
, pp.
35
35
.
55.
“NISA/3D-FLUID (Incompressible) User’s Manual,” 1995, Eng. Mechanics Res. Corporation, Michigan, USA.
56.
Chao
,
B. T.
, and
Trigger
,
K. J.
,
1955
, “
Temperature Distribution at the Chip-tool Interface in Metal Cutting
,”
Trans. ASME
,
77
, pp.
1107
1107
.
You do not currently have access to this content.