Microfiltration is capable of reducing health hazards and environmental pollution associated with metalworking fluids (MWFs) by enabling recycling and microbial removal. This paper investigates chemical characteristics of MWFs that can lead to flux decline during microfiltration using aluminum oxide membranes by studying the family of polyoxyalkylene diblock copolymers comprised of ethylene oxide and propylene oxide. These copolymers are commonly used as lubricant additives in metalworking fluids and serve as a model for beginning to understand the relationship between metalworking fluid formulation and microfiltration flux. It is found that increasing the hydrophobic content of the copolymers can lead to reduced flux. Anionic modification and increasing molecular weight of the copolymers can also lead to reduced flux. Insufficient cleaning of anionic copolymers from the membrane leads to pH-dependent flux of deionized water during subsequent filtration. The pH-dependence of flux arises due to swelling caused by electrostatic repulsions between the aluminum oxide surface and anionic copolymers that remain adsorbed to the surface of the membrane. This swelling serves to resist permeate flow above the isoelectric point of aluminum oxide. This phenomenon is observed directly using Field Emission Environmental Scanning Electron Microscopy (FE-ESEM).

1.
Marano
,
R. S.
,
Cole
,
G. S.
, and
Carduner
,
K. R.
,
1991
, “
Particulate in Cutting Fluids: Analysis and Implications in Machining Performance
,”
Lubr. Eng.
,
47
, pp.
376
382
.
2.
Klocke
,
F.
, and
Eisenblatter
,
G.
,
1997
, “
Dry Cutting
,”
CIRP Ann.
,
46
, pp.
1
8
.
3.
Rajagopalan
,
N.
, et al.
,
1998
, “
Pollution Prevention in an Aluminum Grinding Facility
,”
Met. Finish.
,
96
, pp.
18
24
.
4.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
,
2000
, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 1: Experimental Investigation of Flux Decline
,”
ASME J. Manuf. Sci. Eng.
,
122
, No.
4
, pp.
739
745
.
5.
Byers, J. P., ed., 1994, Metalworking Fluids, Marcel Dekker, New York.
6.
ILMA, 1990, Waste Minimization and Wastewater Treatment of Metalworking Fluids, Independent Lubricant Manufacturers Association.
7.
Mahdi
,
S. M.
, and
Sko¨ld
,
R. O.
,
1991
, “
Ultrafiltration for the Recycling of a Model Water-based Metalworking Fluid: Process Design Considerations
,”
Lubr. Eng.
,
47
, pp.
686
690
.
8.
Mahdi
,
S. M.
, and
Sko¨ld
,
R. O.
,
1990
, “
Surface Chemistry Aspects on the Use of Ultrafiltration for the Recycling of Waterbased Synthetic Metalworking Fluids: Components Studies
,”
J. Dispersion Sci. Technol.
,
11
, pp.
1
30
.
9.
Misra
,
S. K.
, and
Sko¨ld
,
R. O.
,
1999
, “
Membrane Filtration Studies of Inversely Soluble Model Metalworking Fluids
,”
Sep. Sci. Technol.
,
34
, pp.
53
67
.
10.
Skerlos
,
S. J.
,
Rajagopalan
,
N.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Angspatt
,
V. D.
,
2000
, “
Ingredient-Wise Study of Flux Characteristics in the Ceramic Membrane Filtration of Uncontaminated Synthetic Metalworking Fluids, Part 2: Analysis of Underlying Mechanisms
,”
ASME J. Manuf. Sci. Eng.
,
122
, No.
4
, pp.
746
752
.
11.
Mueller
,
E. R.
, and
Martin
,
W. H.
,
1975
, “
Polyalkylene Glycol Lubricants: Uniquely Water Soluble
,”
Lubr. Eng.
,
31
, pp.
348
356
.
12.
Nance, V. M., 1996, Nonionic Surfactants: Polyoxyalkylene Block Copolymers, Marcel Dekker, Inc., New York.
13.
Lipatov, Y. S., and Sergeeva, L. M., 1974, Adsorption of Polymers, John Wiley & Sons, New York.
14.
Laemmle, J. T., 1984, “Aqueous Metalworking Lubricant Containing Polyoxypropylene-Polyoxyethylene-Polyoxypropylene Block Copolymers,” US Patent, 4452711.
15.
Marques
,
C.
,
Joanny
,
J. F.
, and
Leibler
,
L.
,
1988
, “
Adsorption of Block Copolymers in Selective Solvents
,”
Macromolecules
,
21
, pp.
1051
1059
.
16.
Adamson, A. W., and Gast, A. P., 1997, Physical Chemistry of Surfaces, John Wiley & Sons, New York.
17.
Webber
,
R. M.
,
Anderson
,
J. L.
, and
Jhon
,
M. S.
,
1990
, “
Hydrodynamic Studies of Adsorbed Diblock Copolymers in Porous Membranes
,”
Macromolecules
,
23
, pp.
1026
1034
.
18.
Howard
,
G. J.
, and
McConnel
,
P.
,
1967
, “
Adsorption of Polymers at the Solution-Solid Interface: I. Polyethers on Silica
,”
J. Phys. Chem.
,
71
, pp.
2974
2981
.
19.
Howard
,
G. J.
, and
McConnel
,
P.
,
1967
, “
Adsorption of Polymers at the Solution-Solid Interface: II. Polyethers on Carbon
,”
J. Phys. Chem.
,
71
, pp.
2981
2990
.
20.
Howard
,
G. J.
, and
McConnel
,
P.
,
1967
, “
Adsorption of Polymers at the Solution-Solid Interface: III. Polyethers on Nylon
,”
J. Phys. Chem.
,
71
, pp.
2991
2995
.
21.
McKenzie
,
P. F.
,
Webber
,
R. M.
, and
Anderson
,
J. L.
,
1994
, “
Effect of Solvated Block Size on the Layer Thickness of Copolymers Adsorbed to Liquid/Solid Interfaces
,”
Langmuir
,
10
, pp.
1539
1543
.
22.
Munch
,
M. R.
, and
Gast
,
A. P.
,
1988
, “
Block Copolymers at Interfaces. 2. Surface Adsorption
,”
Macromolecules
,
21
, pp.
1366
1372
.
23.
Hankins
,
N. P.
, et al.
,
1996
, “
Modeling Effects of pH and Counterions on Surfactant Adsorption at the Oxide/Water Interface
,”
Ind. Eng. Chem. Res.
,
35
, pp.
2844
2855
.
24.
Hirata
,
Y.
,
Kamikakimoto
,
K.
, et al.
,
1992
, “
Interaction Between Alpha-Alumina Surface and Polyacrylic Acid
,”
J. Ceram. Soc. Jpn.
,
100
, pp.
7
12
.
25.
Lee
,
D. H.
,
Condrate
,
R. A.
, and
Reed
,
J. S.
,
1996
, “
Infrared Spectral Investigation of Polyacrylate Adsorption on Alumina
,”
J. Mater. Sci.
,
31
, pp.
471
478
.
26.
Hidber
,
P. C.
,
Garule
,
T. J.
, et al.
,
1996
, “
Citric Acid—A Dispersant for Aqueous Alumina Suspensions
,”
J. Am. Ceram. Soc.
,
79
, pp.
1857
1867
.
You do not currently have access to this content.