A model to predict the full biaxial surface and subsurface residual stresses from the turning process is presented. The model formulation includes thermomechanical coupling, plastic heating, frictional heating, convection, conduction, thermal softening and strain hardening. Calibration and validation of the model are undertaken. The predictive model stands as a tool both to optimize the turning process based on the resulting residual stresses and also to gain an in-depth understanding of the physics of residual stress development from the turning process. In addition, thorough analysis of the experimental results reveals insight into the effects of feed and depth of cut on the surface and subsurface machining-induced residual stresses.

1.
Jacobus
,
K.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2000
, “
Machining-Induced Residual Stress: Experimentation and Modeling
,”
ASME J. Manuf. Sci. Eng.
,
122
, No.
1
, pp.
20
31
.
2.
Palmer, W. B., and Yeo, R. C. K., 1963, “Metal Flow Near the Tool Point during Orthogonal Cutting with a Blunt Tool,” Proceedings of the 4th International Machine Tool Design and Research Conference, pp. 61–71, Oxford, Pergamon.
3.
Enahoro
,
H. E.
, and
Oxley
,
P. L. B.
,
1966
, “
Flow along Tool-Chip Interface in Orthogonal Metal Cutting
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
36
41
.
4.
Matsumoto
,
Y.
,
Magda
,
D.
,
Hoeppner
,
D. W.
, and
Kim
,
T. Y.
,
1991
, “
Effect of Machining Processes on the Fatigue Strength of Hardened AISI 4340 Steel
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
154
159
.
5.
Tsuchida
,
K.
,
Kawada
,
Y.
, and
Kodama
,
S.
,
1975
, “
A Study of the Residual Stress Distributions by Turning
,”
Bull. Jpn. Inst. Met.
,
18
(
116
), pp.
123
130
.
6.
Okushima, K., and Kakino, Y., 1972, “A Study of Residual Stress Produced by Metal Cutting,” Memoirs of the Faculty of Engineering, Kyoto University Japan, 34, pp. 234–248.
7.
Jang
,
D. Y.
,
Watkins
,
T. R.
,
Kozaczek
,
K. J.
,
Hubbard
,
C. R.
, and
Cavin
,
O. B.
,
1996
, “
Surface Residual Stresses in Machined Austenitic Stainless Steel
,”
Wear
,
194
(
1–2
), pp.
168
173
.
8.
Jang
,
D. Y.
,
Liou
,
J.
, and
Cho
,
U.
,
1994
, “
Study of Residual Stress Distribution in the Machined Stainless Steel Components
,”
Tribol. Trans.
,
37
(
3
), pp.
594
600
.
9.
Waldorf, Daniel J., 1996, Shearing, Ploughing and Wear in Orthogonal Machining, PhD thesis, University of Illinois at Urbana-Champaign.
10.
Gallant, A. D., Isa, Bar-On, and Tuler, Floyd R., 1991, “Effect of Residual Stress on the J-R Curve of HY-100 Steel,” Elastic-Plastic Fracture Test Methods: The User’s Experience (second volume), ASTM STP 1114, J. A. Joyce, ed., American Society for Testing & Materials, Philadelphia, pp. 260–272.
11.
Reed
,
E. C.
, and
Viens
,
J. A.
,
1960
, “
The Influence of Residual Stress on Fatigue Limit of Titanium
,”
ASME J. Eng. Ind.
,
60
, pp.
76
78
.
12.
Qi
,
H.
, and
Jing
,
X. R.
,
1991
, “
Surface Integrity and Its Effects on the Fatigue Life of the Nickel-Based Superalloy GH33A
,”
Int. J. Fatigue
,
13
(
4
), pp.
322
326
.
13.
Taylor
,
D.
, and
Clancy
,
O. M.
,
1991
, “
Fatigue Performance of Machined Surfaces
,”
Fatigue Fract. Eng. Mater. Struct.
,
14
(
2–3
), pp.
329
336
.
14.
Cramberg
,
U.
, and
Horn
,
E. M.
,
1975
, “
Erfahrungen mit scha¨digungen durch gleichma¨ßige fla¨chenkorrosion sowie selektive korrosion, mulden-, spalt-, und kontaktkorrosion
,”
VDI-Berichte
,
243
, pp.
75
92
.
15.
Liu
,
C. R.
, and
Barash
,
M. M.
,
1982
, “
Variables Governing Patterns of Mechanical Residual Stress in a Machined Surface
,”
ASME J. Eng. Ind.
,
104
, pp.
257
264
.
16.
Nowak
,
J. W.
,
Shin
,
Y. C.
, and
Incropera
,
F. P.
,
1997
, “
Assessment of Plasma Enhanced Machining for Improved Machinability of Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
119
(
1
), pp.
125
129
.
17.
Yu
,
X. X.
,
Lau
,
W. S.
, and
Lee
,
T. C.
,
1997
, “
A Finite Element Analysis of Residual Stresses in Stretch Turning
,”
Int. J. Mach. Tools Manuf.
,
37
(
10
), pp.
1525
1537
.
You do not currently have access to this content.