Numerical simulation of the laser-induced formation of shapes from polymer powders is achieved using an extension of a previously developed model of nonisothermal powder sintering. The extended model mimics the Selective Laser Sintering process which is used to produce a multiple layer part via laser irradiation. Model predictions of the physical features and effective thermophysical properties (porosity and thermal conductivity) of the object demonstrate sensitivity to several thermal processing parameters. Predicted values of the effective thermal conductivity and average porosity of the processed item are reported and correlated. [S1087-1357(00)00904-7]

1.
Conley
,
J. G.
, and
Marcus
,
H. L.
,
1997
, “
Rapid Prototyping and Solid Free Form Fabrication
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
811
816
.
2.
Nelson
,
J. C.
,
Xue
,
S.
,
Barlow
,
J. W.
,
Beaman
,
J. J.
,
Marcus
,
H. L.
, and
Bourell
,
D. L.
,
1993
, “
Model of Selective Laser Sintering of Bishpenol-A Polycarbonate
,”
Ind. Eng. Chem. Res.
,
32
, pp.
2305
2317
.
3.
Martinez-Herrera
,
J. I.
, and
Derby
,
J. J.
,
1994
, “
Analysis of Capillary-Driven Viscous Flows During the Sintering of Ceramic Powders
,”
AIChE J.
,
40
, pp.
1794
1803
.
4.
Bellehumeur
,
C. T.
,
Bisaria
,
M. K.
, and
Vlachopoulos
,
J.
,
1996
, “
An Experimental Study and Model Assessment of Polymer Sintering
,”
J. Polym. Eng. Sci.
,
36
, pp.
2198
2207
.
5.
Kandis
,
M.
, and
Bergman
,
T. L.
,
1997
, “
Observation, Prediction, and Correlation of Geometric Shape Evolution Induced by Non-Isothermal Sintering of Polymer Powder
,”
ASME J. Heat Transfer
,
119
, pp.
824
831
.
6.
Kandis
,
M.
,
Buckley
,
C. W.
, and
Bergman
,
T. L.
,
1999
, “
An Engineering Model for Laser-Induced Sintering of Polymer Powders
,”
ASME J. Manuf. Sci. Eng.
,
121
, pp.
360
365
.
7.
Whitaker, S., 1977, A Theory of Drying in Porous Media, in Advances in Heat Transfer, J. P. Hartnett, and T. F. Irvine, Jr., eds., Academic Press, New York, pp. 119–203.
8.
Frenkel
,
J.
,
1945
, “
Viscous Flow of Crystalline Bodies under the Action of Surface Tension
,”
Russ. J. Phys.
,
9
, pp.
385
391
.
9.
Scherer, G. W., 1992, “Constitutive Models for Viscous Sintering,” Mechanics of Granular Materials and Powder System, M. M. Mehrabadi, ed., ASME MD-Vol. 37, pp. 1–18.
10.
Torrance
,
K. E.
,
1979
, “
Natural Convection in Thermally Stratified Enclosures with Localized Heating from Below
,”
J. Fluid Mech.
,
95
, pp.
477
495
.
11.
Devereux, D. B., 1993, Design and Development of a Technique for Measuring Radiative Properties of Dielectric Powder, M. S. thesis, University of Texas at Austin, Austin, TX.
12.
Hanamura, K. and Kumada, M., 1996, “Radiant Flash Melting of Micron Polymer-Particles,” Radiative Transfer-I, M. P. Menguc, ed., Begell House, New York, pp. 682–689.
13.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Washington, DC.
14.
Romero
,
L. A.
, and
Dickey
,
F. M.
,
1996
, “
Lossless Laser Beam Shaping
,”
J. Opt. Soc. Am. A
,
13
, pp.
751
760
.
15.
Dickey
,
F. M.
, and
Holswade
,
S. C.
,
1996
, “
Gaussian Laser Beam Profile Shaping
,”
Opt. Eng.
,
35
, pp.
3285
3295
.
16.
Gebhart, B., 1993, Heat Conduction and Mass Diffusion, McGraw-Hill, New York.
17.
Bunnell, D. E., 1995, “Fundamentals of Selective Laser Sintering of Metals,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
18.
Raman
,
R.
, and
German
,
R. M.
,
1995
, “
A Mathematical Model for Gravity-Induced Distortion during Liquid-Phase Sintering
,”
Metall. Trans. A
,
26
, pp.
653
659
.
19.
McAdams, W. H., 1954, Heat Transmission, McGraw-Hill, New York.
You do not currently have access to this content.