A three-dimensional inverse analysis utilizes a different perspective to estimate the surface thermal behavior of the working roll in rolling process. The inverse analysis is based on the temperature reading taken inside the roll at several different locations. At the beginning of the study, finite-difference methods are employed to discretize the problem domain and then a linear inverse model is constructed to identify the boundary conditions. The present approach is to rearrange the matrix forms of the differential governing equations and estimate the surface unknown conditions of the working roll. Then, the linear least-squares method is adopted to find the solution. The advantages of this proposed inverse analysis method are that no prior information is needed regarding the functional form of the unknown quantities, no initial guess need be used and the numbers of iterations for calculation process is limited to one. The results show that only few measuring points are sufficient to estimate the boundary conditions when measurement errors are neglected. When measurement errors are considered, more measuring points are needed in order to increase the congruence of the estimated results to exact solutions. [S1087-1357(00)70201-2]

1.
Cerni, S., 1961, The Temperature and Thermal Stress in Rolling of Metal Strip, Ph.D. thesis, Carnegie-Mellon Univ., Pittsburgh, PA.
2.
Hogshead, T. H., 1967, Temperature Distributions in Rolling of Metal Strip, Ph.D. thesis, Carnegie-Mellon Univ., Pittsburgh, PA.
3.
Haubitzer
,
W.
,
1974
, “
Steady-State Temperature Distributions in Rolls
,”
Arch. Eisenhuettenwes.
,
46
, pp.
635
638
.
4.
Patula
,
E. H.
,
1981
, “
Steady-State Temperature Distributions in Rotating Roll Subject to Surface Heat Fluxes and Convection Cooling
,”
ASME J. Heat Transfer
,
103
, pp.
36
41
.
5.
Park
,
D. M.
, and
Baker
,
L. L.
,
1972
, “
Temperature Effects of Cooling Work Rolls
,”
Iron Steel Eng.
,
49
, pp.
83
88
.
6.
Poplawski
,
J. V.
, and
Seccombe
,
D. A.
, Jr.
,
1980
, “
Bethlehem’s Contribution to the Mathematical Modeling of Cool Roll in Tandem Mills
,”
Iron Steel Eng.
,
57
, pp.
47
58
.
7.
Smith
,
R. M.
, and
Hutton
,
A. G.
,
1982
, “
The Numerical Treatment of Advection: A Performance Comparison of Current Methods
,”
Numer. Heat Transfer
,
5
, pp.
439
461
.
8.
Tseng
,
A. A.
,
1984
, “
Finite-Difference Solutions for Heat Transfer in a Roll Rotating at High Speed
,”
Numer. Heat Transfer
,
7
, pp.
123
125
.
9.
Bryant
,
G. F.
, and
Chiu
,
T. S. L.
,
1892
, “
Simplified Roll-Temperature Model: Spray-Cooling and Stress Effects
,”
Metals Technol.
,
9
, pp.
478
484
.
10.
Bryant
,
G. F.
, and
Heselton
,
M. O.
,
1982
, “
Roll-Gap Temperature Models for Hot Mills
,”
Metals Technol.
,
9
, pp.
469
477
.
11.
Heinrich
,
J. C.
, et al.
,
1977
, “
An Upwind Finite Element Scheme for Two-Dimensional Convection Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
, pp.
131
143
.
12.
Kariagozis
,
A. N.
, and
Lenard
,
J. G.
,
1988
, “
Temperature Distribution in a Slab During Hot Rolling
,”
ASME J. Eng. Mater. Technol.
,
110
, pp.
17
21
.
13.
Lahoti
,
G. D.
,
Shah
,
S. N.
, and
Altan
,
T.
,
1978
, “
Computer-Aided Analysis of the Deformations and Temperatures in Strip Rolling
,”
ASME J. Eng. Indus.
100
, pp.
159
166
.
14.
Pietrzyk, M., and Lenard, J. G., 1988, “Experimental Substantiation of Modeling Heat Transfer in Hot Flat Rolling,” in Proc. 25th, Natl. Heat Transfer Conf., 3, HTD-Vol. 96, H. R. Jacobs, ed., Houston, pp. 47–53.
15.
Pietrzyk, M., Lenard, J. G., and Souse, C. M., 1988, “A Study of Temperature Distribution in Strips During Cold Rolling,” 6th Natl. Congress on Heat Transfer, Bari, pp. 481–494.
16.
Sheppard
,
T.
, and
Wright
,
D. S.
,
1980
, “
Structural and Temperature Variations During Rolling of Aluminum Slabs
,”
Metals Technol.
,
7
, pp.
274
281
.
17.
Silvonen
,
A.
,
Malinen
,
A.
, and
Korhonen
,
A. S.
,
1987
, “
A Finite Element Study of Plane Strain Hot Rolling
,”
Scand. J. Metall.
,
16
, pp.
103
108
.
18.
Thompson, E. G., and Berman, H. M., 1984, “Steady-State Analysis of Elasto-Viscoplastic Flow During Rolling,” Numerical Analysis of Forming Processes, Wiley, New York, pp. 269–283.
19.
Wilmotte
,
S.
, et al.
,
1983
, “
Model of the Evolution of the Temperature of the Strip in Hot Strip Mill
,”
CRM
,
36
, pp.
35
44
.
20.
Zienkiewicz
,
O. C.
,
Onate
,
E.
, and
Heinrich
,
J. C.
,
1981
, “
General Formulation for Coupled Thermal Flow of Metals Using Finite Elements
,”
Int. J. Numer. Methods Eng.
,
17
, pp.
1497
1514
.
21.
Tseng
,
A. A.
,
Lin
,
F. H.
,
Gunderia
,
A. S.
, and
Ni
,
D. S.
,
1989
, “
Roll Cooling and Its Relationship to Roll Life
,”
Metall. Trans. A
,
20
, pp.
2305
2320
.
22.
Huang
,
C. H.
,
Ju
,
T. M.
, and
Tseng
,
A. A.
,
1995
, “
The Estimation of Surface Thermal Behavior of the Working Roll in Hot Rolling Process
,”
Int. J. Heat Mass Transf.
,
38
, No.
6
, pp.
1019
1031
.
23.
Alifanov
,
O. M.
,
1974
, “
Solution of an Inverse Problem of Heat Conduction by Iteration Methods
,”
J. Eng. Phys.
,
26
, No.
4
, pp.
471
476
.
24.
Beck
,
J. V.
,
Litkouhi
,
B.
, and
St. Clair
,
C. R.
,
1982
, “
Efficient Sequential Solution of Nonlinear Inverse Heat Conduction Problem
,”
Numerical Heat Transfer
,
5
, pp.
275
286
.
25.
Zienkiewicz, O. C., 1971, The Finite Element Method in Engineering Science, McGraw-Hill, London.
26.
Tohio
,
Y.
, and
Kazushige
,
I.
,
1985
, “
Inverse Heat-Conduction Problem by Finite-Element Formulation
,”
Int. J. Syst. Sci.
,
16
, pp.
1365
1376
.
27.
Zabaras
,
N.
, and
Liu
,
J. C.
,
1988
, “
An Analysis of Two-Dimensional Linear Inverse Heat Transfer Problem Using an Integral Method
,”
Numer. Heat Transf.
,
13
, pp.
527
533
.
28.
Bass
,
B. R.
,
1980
, “
Application of the Finite Element Method to the Nonlinear Inverse Heat Conduction Problem Using Beck’s Second Method
,”
ASME J. Eng. Indus.
,
102
, pp.
168
176
.
29.
Hsu
,
T. R.
,
Sun
,
N. S.
,
Chen
,
G. G.
, and
Gong
,
Z. L.
,
1992
, “
Finite Element Formulation for Two-Dimensional Inverse Heat Conduction Analysis
,”
ASME J. Heat Transfer
,
114
, pp.
553
557
.
30.
Zheng
,
H.
, and
Murio
,
D. A.
,
1996
, “
3D-IHCP on a Finite Cube
,”
Comput. Math. Applic.
,
31
, No.
1
, pp.
1
14
.
31.
Yang
,
C. Y.
, and
Chen
,
C. K.
,
1996
, “
The Boundary Estimation in Two-Dimensional Inverse Heat Conduction Problems
,”
J. Phys. D: Appl. Phys.
,
29
, pp.
333
339
.
32.
Yang
,
Y. T.
,
Hsu
,
P. T.
, and
Chen
,
C. K.
,
1997
, “
A 3D Inverse Conduction Problem Approach for Estimating Heat Flux and Surface Temperature on a Hollow Cylinder
,”
J. Phys. D: Appl. Phys.
,
30
, pp.
1326
1333
.
33.
Beck, J. V., Blackwell, B., and Clair, C. R. St., 1985, Inverse Heat Conduction-III Posed Problem, Wiley, New York.
34.
Hensel, E., 1991, Inverse Theory and Applications for Engineers, Prentice-Hall, Englewood Cliffs, NJ.
35.
Tseng
,
A. A.
,
Chang
,
J. G.
,
Raudensky
,
M.
, and
Horsky
,
J.
,
1995
, “
An Inverse Finite Evaluation of Roll Cooling in Hot Rolling of Steels
,”
J. Mat. Process. Manuf. Sci.
,
3
, No.
4
, pp.
387
408
.
You do not currently have access to this content.