Fabric is modeled as a particular type of membrane formed from two orthogonal families of yarns. In contrast to usual membrane theory, the fabric is regarded to possess a certain compressive rigidity which is much weaker than its tensile rigidity. An energy density function is defined corresponding to the material model. The finite element formulation is based on the total Lagrangian approach. Four node quadrilateral elements are adopted. An accelerated multigrid technique using the conjugate gradient method as basic iterative method is employed to minimize energy to reach the final equilibrium position. Two examples of fabric draping are analyzed using the proposed model. The influence of the material parameters on the draping behavior is discussed.

1.
Breen
D. E.
,
House
D. H.
, and
Getto
P. H.
,
1992
, “
A Physically-based Particle Model of Woven Cloth
,”
The Visual Computer
, Vol.
8
, pp.
264
277
.
2.
Ng
H. N.
,
Grimsdale
R. L.
, and
Allen
W. G.
,
1995
, “
A System for Modeling and Visualization of Cloth Material
,”
Computers and Graphics
, Vol.
19
, pp.
423
430
.
3.
Volino, P., Courchesne, M., and Thalmann, N. M., “Versatile and Efficient Techniques for Simulating Cloth and Other Deformable Objects,” Computer Graphics, (Proc. SIGGRAPH) Los Angeles, pp. 137–144, 1995.
4.
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K., 1987, “Elastically Deformable Models,” Computer Graphics, (Proc. SIGGRAPH) Vol. 21, pp. 205–214.
5.
Collier
J. R.
,
Collier
B. J.
,
O’Toole
G.
, and
Sargand
S. M.
,
1991
, “
Drape Prediction by Means of Finite Element Analysis
,”
Journal of the Textile Institute
, Vol.
82
, pp.
96
107
.
6.
Kang
T. J.
, and
Yu
W. R.
,
1995
, “
Drape Simulation of Woven Fabric by Using the Finite-Element Method
,”
Journal of the Textile Institute
, Vol.
86
, pp.
635
648
.
7.
Chen
M. X.
,
Sun
Q. P.
, and
Yuen
M. M. F.
,
1998
, “
Simulation of Fabric Draping Using a Thin Plate Element with Finite Rotation
,”
Acta Mechanica Sinica
, Vol.
14
, pp.
239
237
.
8.
Contri
P.
, and
Schrefler
B. A.
,
1988
, “
A Geometrically Nonlinear Finite Element Analysis of Wrinkled Membrane Surfaces by a Non-compression Material Model
,”
Communications in Applied Numerical Method
, Vol.
8
, pp.
5
15
.
9.
Dong
G. J.
, and
Byung
M. K.
,
1992
, “
Complementarity Problem Formulation for the Wrinkled Membrane and Numerical Implementation
,”
Finite Elements in Analysis and Design
, Vol.
12
, pp.
91
104
.
10.
Pipkin
A. C.
,
1993
, “
Relaxed Energy Densities for Small Deformations of Membranes
,”
IMA Journal of Applied Mathematics
, Vol.
50
, No.
3
, pp.
225
37
.
11.
Pipkin
A. C.
, “
Relaxed Energy Densities for Large Deformations of Membranes
,”
1994
,
IMA Journal of Applied Mathematics
, Vol.
52
, No.
3
, pp.
297
308
.
12.
Leung, K. Y. C., Taylor, G., Yuen, M. M. F., and Kung, A., 1997, “Development of Three Dimensional Computer-Aided-Design System for the Garment Industry,” Proceedings of the 4th Asian Textile Conference, Taipei, pp. 1025–1029.
13.
Morton, W. E., and Hearle, J. W. S., 1962, Physical Properties of Textile Fibers, Manchester and London, The Textile Institute, Butterworths.
14.
Niordson Frithiof I., 1985, Shell Theory, North-Holland Series in Applied Mathematics and Mechanics, J. D. Achenbach et al., ed., Elservier Science, North-Holland, Vol. 29.
15.
Argyris
J.
, and
Tenek
L.
,
1994
, “
Linear and Geometrically Nonlinear Bending of Isotropic and Multilayered Composite Plates by the Natural Mode Method
,”
Computer Method in Applied Mechanics and Engineering
, Vol.
113
, pp.
207
251
.
16.
Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., 1993, Nonlinear Programming: Theory and Algorithms, the second edition, John Wiley & Sons, Inc. New York.
17.
Bornemann
F. A.
, and
Deuflhard
P.
,
1996
, “
The Cascadic Multigrid Method for Elliptic Problems
,”
Numerische Mathematik
, Vol.
75
, pp.
135
152
.
18.
Kacou
S.
, and
Parsons
I. D.
,
1993
, “
A Parallel Multigrid Method for History-Dependent Elastoplasticity Computations
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
108
, pp.
1
21
.
19.
Fish
J.
,
Pan
L.
,
Belsky
V.
, and
Gomaa
S.
,
1996
, “
Unstructured Multigrid Method for Shells
,”
International Journal of Numerical Methods in Engineering
, Vol.
39
, pp.
1191
1197
.
This content is only available via PDF.
You do not currently have access to this content.