Shape deposition manufacturing (SDM) is a solid freeform fabrication (SFF) methodology for automatically building up material layers to form three-dimensional, complex-shaped, multi-material structures. Microcasting is a molten metal droplet deposition process which is able to create fully dense metal layers with controlled microstructures. SDM combines microcasting with other intermediate processing operations, such as CNC machining and shot peening, to create high quality metal parts. In this paper, a description is given of SDM and the microcasting process. An overview of thermal and mechanical issues associated with SDM and microcasting is presented, including the control of interlayer metallurgical bonding through substrate remelting, the control of cooling rates of both the substrate and the deposited material and the minimization of residual thermal stress effects. Thermal models are used to study the issue of localized remelting of previously deposited material by newly deposited molten droplets to achieve metallurgical bonding. Mechanical modeling provides insight into residual stress build-up during part manufacture and residual stress-driven debonding between deposited layers.

1.
Amon, C. H., Prinz, F. B., and Schmaltz, K. S., 1993, Numerical Modeling of Thermal Spray Systems, Technical Report EDRC 24106-93, Carnegie Mellon University, Pittsburgh, PA.
2.
Amon, C. H., Beuth, J., Kirchner, H., Merz, R., Prinz, F. B., Schmaltz, K. S., and Weiss, L., 1993, “Material Issues in Layered Forming,” Proceedings, 1993 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 1–10.
3.
Amon, C. H., Merz, R., Prinz, F. B., and Schmaltz, K. S., 1994, “Thermal Modeling and Experimental Testing of MD* Spray Shape Deposition Processes,” 10th International Heat Transfer Conference, Brighton, UK, Vol. 7, pp. 321–327.
4.
Amon
C. H.
,
Schmaltz
K. S.
,
Merz
R.
, and
Prinz
F. B.
,
1996
, “
Numerical and Experimental Investigation of Interface Bonding via Substrate Remelting of an Impinging Molten Metal Droplet
,”
ASME Journal of Heat Transfer
, Vol.
116
, pp.
164
172
.
5.
Bampton, C. C., and Burkett, R., 1995, “Free Form Fabrication of High Strength Metal Components and Dies,” Proceedings, 1995 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 342–345.
6.
Bertagnolli, M., Marchese, M., Jacucci, G., St. Doltsinis, I., and Noelting, S., 1994, “Finite Element Thermomechanical Simulation of Droplets Impacting on a Rigid Substrate,” Proceedings, Energy Tech. Conf. and Exhib. ASME Symp. on Materials, Design and Analysis, ETCE, New Orleans.
7.
Beuth
J. L.
, and
Narayan
S. H.
,
1996
, “
Residual Stress-Driven Delamination in Deposited Multi-Layers
,”
International Journal of Solids and Structures
, Vol.
33
, No.
1
, pp.
65
78
.
8.
Bourell, D. L., Crawford, R. H., Marcus, H. L., Beaman, J. J., and Barlow, J. W., 1994, “Selective Laser Sintering of Metals,” Proceedings, 1994 ASME International Mechanical Engineering Congress and Exposition, Manufacturing Science and Engineering, Vol. 2, pp. 519–528.
9.
Charalambides
P. G.
,
Lund
J.
,
Evans
A. G.
, and
McMeeking
R. M.
,
1989
, “
A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces
,”
ASME Journal of Applied Mechanics
, Vol.
56
, pp.
77
82
.
10.
Chin, R. K., Beuth, J. L., and Amon, C. H., 1995, “Control of Residual Thermal Stresses in Shape Deposition Manufacturing, Proceedings, 1995 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 221–228.
11.
Chin, R. K., Beuth, J. L., and Amon, C. H., 1996a, “Thermomechanical Modeling of Successive Material Deposition in Layered Manufacturing,” Proceedings, 1996 Solid Freeform Fabrication Symp., D. L. Bourell et al., eds., Austin, pp. 507–515.
12.
Chin
R. K.
,
Beuth
J. L.
, and
Amon
C. H.
,
1996
b, “
Thermomechanical Modeling of Molten Metal Droplet Solidification Applied to Layered Manufacturing
,”
Mechanics of Materials
, Vol.
24
, pp.
257
271
.
13.
Chua
C. K.
,
1994
, “
Three-dimensional Rapid Prototyping Technologies and Key Development Areas
,”
Computing and Control Engineering Journal
, Vol.
5
, No.
4
, pp.
200
206
.
14.
Comb, J. W., Priedeman, W. R., and Turley, P. W., 1994, “Layered Manufacturing Control Parameters and Material Selection Criteria,” Proceedings, 1994 ASME International Mechanical Engineering Congress and Exposition, Manufacturing Science and Engineering, Vol. 2, pp. 547–556.
15.
Doyle, T. E., 1990, “Shape Melting Technology,” Proceedings, 1990 National Conference on Rapid Prototyping, Edison Materials Technology Center, Dayton, Ohio, pp. 55–62.
16.
Feygin
M.
,
Hsieh
B.
, and
Melkanoff
M. A.
,
1992
, “
Laminated Object Manufacturing (LOM): A New Tool in the CIM World
,”
IFIP Transactions B (Applications in Technology)
, Vol.
B-3
, pp.
457
464
.
17.
Griffith, M. L., Keicher, D. L., Atwood, C. L., Romero, J. A., Smugeresky, J. E., Harwell, L. D., and Greene, D. L., 1996, “Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS), Proceedings, 1996 Solid Freeform Fabrication Symp., D. L. Bourell et al., eds., Austin, pp. 125–132.
18.
Gutierrez-Miravete
E.
,
Lavernia
E. J.
,
Trapaga
G. M.
,
Szekely
J.
, and
Grant
N. J.
,
1989
, “
Mathematical Model of the Spray Deposition Process
,”
Metallurgical Transactions A
, Vol.
20A
, pp.
71
85
.
19.
Kang
B.
,
Zhao
Z.
, and
Poulikakos
D.
,
1994
, “
Solidification of Liquid Metal Droplets Impacting Sequentially on a Solid Surface
,”
ASME Journal of Heat Transfer
, Vol.
116
, pp.
436
445
.
20.
Klingbeil
N. W.
and
Beuth
J. L.
,
1996
, “
Interfacial Fracture Testing of Deposited Metal Layers Under Four-Point Bending
,”
Engineering Fracture Mechanics
, Vol.
56
, No.
1
, 1997, pp.
113
126
.
21.
Lawley
A.
,
Mathur
P.
,
Apelian
D.
, and
Meystel
A.
,
1990
, “
Spray Forming: Process Fundamentals and Control
,”
Powder Metallurgy
, Vol.
33
, No.
2
, pp.
109
111
.
22.
Lewis, G. K., Milewski, J. O., Nemec, R., Thomas, D. J., Barbe, M. and Cremers, D. A., 1995, “Directed Light Fabrication,” Report No. LA-UR-95-2845, Los Alamos National Laboratory, Los Alamos, NM.
23.
Masters, W. E., 1990, “Innovations in 3-D Printing,” Proceedings, NCGA ’90 Conference, Anaheim, Vol. 2, pp. 130–137.
24.
Merz, R., 1994, “Shape Deposition Manufacturing,” Ph.D. Dissertation, May. Technical University of Vienna.
25.
Merz, R., Prinz, F. B., Ramaswami, K., Terk, M., and Weiss, L. E., 1994a, “Shape Deposition Manufacturing,” Proceedings, 1994 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 1–8.
26.
Merz, R., Prinz, F. B., and Weiss, L. E., 1994b, “Method and Apparatus for Depositing Molten Metal,” U.S. Patent No. 5,281,789.
27.
Narayan
S. H.
, and
Beuth
J. L.
,
1997
, “
Axisymmetric Delamination in Deposited Multi-Layers
,”
International Journal of Solids and Structures
, Vol.
34
, Nos.
35–36
, 1997, pp.
4617
4631
.
28.
Pang, T. H., 1993, “StereoLithography Epoxy Resin Development: Accuracy and Dimensional Stability,” Proceedings, 1993 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 11–27.
29.
Pintat, T., Greul, M., and Greulich, M., 1995, “Accuracy and Mechanical Behavior of Metal Parts Produced by Lasersintering,” Proceedings, 1995 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 72–79.
30.
Prinz, F. B., and Weiss, L. E., 1991, “Method and Apparatus for Fabrication of Three-Dimensional Metal Articles by Weld Deposition,” U.S. Patent No. 5,207,371.
31.
Prinz, F. B., and Weiss, L. E., 1994, “Method for Fabrication of Three Dimensional Articles,” U.S. Patent No. 5,301,415.
32.
Prinz, F. B., Weiss, L. E., and Siewiorek, D. P., 1994, “Electronic Packages and Smart Structures Formed by Thermal Spray Deposition,” U.S. Patent No. 5,278,442.
33.
Sachs, E., Allen, S., Cima, M., Wylonis, E., and Guo, H., 1995, “Production of Injection Molding Tooling with Conformal Cooling Channels Using the Three Dimensional Printing Process,” Proceedings, 1995 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 448–467.
34.
Sachs
E.
,
Cima
M.
,
Bredt
J.
, and
Curodeau
A.
,
1992
, “
CAD-Casting: The Direct Fabrication of Ceramic Shells and Cores by Three Dimensional Printing
,”
Manufacturing Review
, Vol.
5
, No.
2
, pp.
118
126
.
35.
Schmaltz, K. S., and Amon, C. H., 1995, “Experimental Verification of an Impinging Molten Metal Droplet Numerical Simulation,” Modeling Heat Transfer in Multi-Phase Systems, ASME HTD Vol. 317–1, pp. 219–226.
36.
Thomas
B. G.
,
Samarasekera
I. V.
, and
Brimacombe
J. K.
,
1987
a, “
Mathematical Modeling of the Thermal Processing of Steel Ingots: Part I. Heat Flow Model
,”
Metallurgical Transactions B
, Vol.
18B
, pp.
119
130
.
37.
Thomas
B. G.
,
Samarasekera
I. V.
, and
Brimacombe
J. K.
,
1987
b, “
Mathematical Modeling of the Thermal Processing of Steel Ingots: Part II. Stress Model
,”
Metallurgical Transactions B
, Vol.
18B
, pp.
131
147
.
38.
Trapaga
G.
,
Matthys
E. F.
,
Valencia
J. J.
, and
Szekely
J.
,
1992
, “
Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results
,”
Metallurgical Transactions B
, Vol.
23B
, pp.
701
718
.
39.
Wang
G.-X.
, and
Matthys
E. F.
,
1991
, “
Modeling of Heat Transfer and Solidification During Splat Cooling: Effect of Splat Thickness and Splat/Substrate Thermal Contact
,”
Int. J. Rapid Solidification
, Vol.
6
, pp.
141
174
.
40.
Weiss, L. E., and Prinz, F. B., 1994a, “Automated System for Forming Objects by Incremental Buildup of Layers,” U.S. Patent No. 5,301,863.
41.
Weiss, L. E., and Prinz, F. B., 1994b, “Method and Support for Creation of Objects by Layer Deposition,” U.S. Patent No. 5,286,573.
42.
Weiss
L. E.
,
Prinz
F. B.
,
Adams
D. A.
, and
Siewiorek
D. P.
,
1992
, “
Thermal Spray Shape Deposition
,”
Journal of Thermal Spray Technology
, Vol.
1
, pp.
231
237
.
43.
Yoo, J., Cima, M. J., Khanuja, S., and Sachs, E. M., 1993, “Structural Ceramic Components by 3D Printing,” Proceedings, 1993 Solid Freeform Fabrication Symp., H. L. Marcus et al., eds., Austin, pp. 40–50.
44.
Zabaras
N.
,
Ruan
Y.
, and
Richmond
O.
,
1991
, “
On the Calculation of Deformations and Stresses During Axially Symmetric Solidification
,”
ASME Journal of Applied Mechanics
, Vol.
58
, pp.
865
871
.
This content is only available via PDF.
You do not currently have access to this content.