Second and higher-order approximations for machine accuracy calculations are necessary when the precision of the error estimation obtained on the basis of the first order approximations is poor or when first order approximations are not influencing the output accuracy of the machine. This latter case is widely present in the calculations of the functional accuracy of machines, in particular when estimating the machine tool set-up errors or when calculating the influence of machine setting displacements. In the case of machining operations, the second order approximation for the normal position error of the real surface relative to the nominal one is shown to depend on the second fundamental form of the nominal surface. As a real world application, the setting of a grinding machine for a crowned conic surface grinding operation is calculated.

1.
[CHE 93]
Chen
J. S.
,
Yuan
J. X.
,
Ni
J.
, and
Wu
S. M.
,
1993
, “
Real-Time Compensation for Time-Variant Volumetric Errors on a Machining Center
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
472
479
.
2.
[DON 80] Donaldson, R., 1980, “Error Budgets,” Technology of Machine Tools, Vol. 5: Machine Tool Accuracy, Hocken, R. J., ed., Lawrence Livermore Laboratory, University of California, UCRL-52960-5, Livermore, CA.
3.
[DON 86]
Donmez
M. A.
, et al.,
1986
, “
A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precision Engineering
, Vol.
8
, No.
4
, pp.
187
196
.
4.
[DOR 94]
Dorndorf
U.
,
Kiridena
V. S. B.
, and
Ferreira
P. M.
,
1994
, “
Optimal Budgeting of Quasistatic Machine Tool Errors
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
116
, pp.
42
53
.
5.
[EMA 87]
Eman
K. F.
, and
Wu
B. T.
,
1987
, “
Generalized Geometric Error Model for Multi-Axis Machines
,”
Annals of the CIRP
, Vol.
36
/
1
, pp.
253
256
.
6.
[FER 86]
Ferreira
P. M.
, and
Liu
C. R.
,
1986
, “
A Contribution to the Analysis and Compensation of the Geometric Error of Machining Center
,”
Annals of the CIRP
, Vol.
35
/
1
, pp.
259
262
.
7.
[FER 93]
Ferreira
P. M.
, and
Liu
C. R.
,
1993
, “
A Method for Estimating and Compensating Quasistatic Errors of Machine Tools
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
149
159
.
8.
[KIM 91]
Kim
K.
, and
Kim
M. K.
,
1991
, “
Volumetric Accuracy Analysis Based on Generalized Geometric Error Model in Multi-Axis Machine Tools
,”
Mechanisms and Machine Theory
, Vol.
26
, No.
2
, pp.
207
219
.
9.
[KOR 68] Korn, G. A., and Korn, T. M., 1968, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, New York.
10.
[LIT 94] Litvin, F. L., 1994, Gear Geometry and Applied Theory, PTR Prentice Hall, Englewood Cliffs, NJ.
11.
[MOR 92] Moriwaki, T., Sugimura, N., and Miao, Y., 1992, “A Model Based Design of Kinematic Accuracy of Machine Tools,” Human Aspects in Computer Integrated Manufacturing, Olling, G. J., and Kimura, F., eds., Elsevier Science, IFIP, pp. 673–684.
12.
[MOU 94]
Mou
J.
,
1994
, “
Computer-Aided Error Modeling Approach to Improve the Accuracy of Turning Processes
,”
Computers in Industry
, Vol.
24
, No.
1
, pp.
71
80
.
13.
[NIH 92]
Ni
J.
,
Huang
P. S.
, and
Wu
S. M.
,
1992
, “
A Multi-Degree-of-Freedom Measuring System for CMM Geometric Errors
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
114
, pp.
362
369
.
14.
[NIW 93]
Ni
J.
, and
Wu
S. M.
,
1993
, “
An On-Line Measurement Technique for Machine Volumetric Error Compensation
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
85
92
.
15.
[POR 80]
Portman
V. T.
,
1980
, “
Error Summation in the Analytical Calculation of Accuracy
,”
Machines and Tooling
, Vol.
1
, pp.
7
10
.
16.
[POR 81]
Portman
V. T.
,
1981
, “
Universal Method for Calculating the Accuracy of Mechanical Devices
,”
Soviet Engineering Research
, Vol.
1
, No.
7
, pp.
11
15
.
17.
[POR 93] Portman, V. T., and Weill, R., 1993, “Higher Order Approximation in Accuracy Computations for Complex Mechanical Systems: Applications to Machine Tool and Robots,” Proceedings of 3rd CIRP Seminar on Computer Aided Tolerancing, Cachan, France, pp. 197–212.
18.
[RES 88] Reshetov, D. N., and Portman, V. T., 1988, Accuracy of Machine Tools, ASME Press, New York.
19.
[SLO 92] Slocum, A. M., 1992, Precision Machine Design, MIT, Prentice Hall, Englewood Cliffs, New Jersey.
20.
[VEI 86]
Veitschegger
W. K.
, and
Wu
C.-H.
,
1986
, “
Robot Accuracy Analysis Based on Kinematics
,”
IEEE Journal of Robots and Automation
, Vol.
RA-2
, No.
3
, Sept., pp.
171
179
.
21.
[WEI 91]
Weill
R.
, and
Shani
B.
,
1991
, “
Assessment of Accuracy of Robots in Relation with Geometrical Tolerances in Robot Links
,”
Annals of the CIRP
, Vol.
40
/
1
, pp.
395
399
.
22.
[ZIE 90] Ziegert, J. C., Olson, D. G., and Datseris, P., 1990, “A Screw Coordinate Model of Machine Errors,” Modeling of Machine Tools: Accuracy, Dynamics, and Control, Ferreira, P. M., Kapoor, S. G., and Wang, A. C.-Y., eds., pp. 23–31.
This content is only available via PDF.
You do not currently have access to this content.