A mathematical model was developed for computing the metallurgical phase transformations and residual stresses in centrifugal casting of bi-metal grinding rolls used for coal pulverizing. The model considers variation of thermo-mechanical properties of material with temperature, effects of phase changes and metallurgical phase transformations. Rolls idealized as having infinite cylindrical geometry and the actual finite conical geometry are analysed for cases of air and water jet cooling of the centrifuging die. As expected an increase in the martensitic fraction is obtained on the grinding surface due to water jet cooling. The study indicates that the large size rolls analysed herein have higher martensitic fraction as compared to small size roll. Simplified analysis model is developed for usage in parametric studies involving various sizes for initial sizing of the rolls.

1.
Avrami
M.
,
1939
, “
Kinetics of Phase Changes I
,”
J. Chem. Phys.
, Vol.
7
, p.
1103
1103
.
2.
Avrami
M.
,
1940
, “
Kinetics of Phase Changes II
,”
J. Chem. Phys.
, Vol.
8
, p.
212
212
.
3.
Allen
D. H.
, and
Haisler
W. E.
,
1981
, “
A Theory for Analysis of Thermoplastic Materials
,”
Computers and Structures
, Vol.
13
, pp.
129
135
.
4.
Bathe
K. J.
,
Ramm
E.
, and
Wilson
E. L.
,
1975
, “
Finite Element Formulations for Large Deformation Dynamic Analysis
,”
IJNME
, Vol.
9
, pp.
353
386
.
5.
Bathe
K. J.
, and
Khoshgoftaar
M. R.
,
1979
, “
Finite Element Formulation and Solution of Non-Linear Heat Transfer
,”
Nuclear Engineering and Design
, Vol.
51
, pp.
389
401
.
6.
Bathe
K. J.
, and
Cimento
P.
,
1980
, “
Some Practical Procedures for the Solution of Non Linear Finite Element Formulations
,”
Computer Methods in Applied Mechanics and Engineering
, Vol.
22
, pp.
59
85
.
7.
Boyer, H. E., and Gray, A. G., 1977, Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Ohio.
8.
Donald
Rolph W.
, and
Bathe
K. J.
,
1982
, “
An Efficient Algorithm for Analysis of Non Linear Heat Transfer with Phase Changes
,”
IJNME
, Vol.
18
, pp.
119
134
.
9.
Guyer, E. C., and Brownell, David L., 1989, Fundamentals of Thermal Design and Analysis: Handbook of Applied Thermal Design, McGraw Hill, pp. 1.70 to 1.74.
10.
Koistinen
D. P.
, and
Marburger
R. E.
,
1959
, “
A General Equation Prescribing Extent of Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Carbon Steels
,”
Acta Metall.
, Vol.
7
, p.
59
59
.
11.
Kreith, Frank, 1973, Principles of Heat Transfer, Intext ED. 3.
12.
LI
Y. Y.
, and
Chen
Y.
,
1988
, “
Modelling Quenching to Predict Residual Stresses and Microstructure Distribution
,”
ASME Journal of Engineering Materials and Technology
, Vol.
110
, pp.
372
379
.
13.
Nagasaka
Y.
,
Brimacombe
J. K.
,
Hawbolt
E. B.
,
Samarasekera
I. V.
,
Hernandez-Morales
B.
, and
Chiddiac
S. E.
,
1993
, “
Mathematical Model of Phase Transformations and Elasto-Plastic Stress in the Water Spray Quenching of Steel Bars
,”
Metallurgical Transactions, A
, Vol.
24A
, pp.
795
808
.
14.
Agarwal
Prakash
, and
Brimacombe
J. K.
,
1981
, “
Mathematical Model of Heat Flow and Austenite-Pearlite Transformation in Eutectoid Carbon Steel Rods for Wire
,”
Metallurgical Transactions B
, Vol.
12B
, pp.
121
133
.
15.
Rammerstorfer
F. G.
,
Fischer
D. F.
,
Mitter
W.
,
Bathe
K. J.
, and
Snyder
M. D.
,
1981
, “
On Thermo-Elastic-Plastic Analysis of Heat Treatment Process Including Creep and Phase Changes
,”
Computers and Structures
, Vol.
13
, pp.
771
779
.
16.
Schreyer
H. L.
,
Kulakk
R. F.
, and
Kramer
J. M.
,
1979
, “
Accurate Numerical Solutions for Elastic-Plastic Models
,”
ASME Journal of Pressure Vessel Technology
, Vol.
101
, pp.
226
241
.
17.
Snyder
M. D.
, and
Bathe
K. J.
,
1981
, “
A Solution Procedure for Thermo-Elastic-Plastic and Creep Problems
,”
Nuclear Engineering and Design
, Vol.
64
, 1981, pp.
49
80
.
18.
Timoshenko, S., and Goodier, J. N., 1970, Theory of Elasticity, Tokyo, McGraw Hill.
19.
Ueda
Y.
, and
Nakacho
K.
,
1980
, “
Theory of Thermal Elastic Plastic Analysis With a More General Work Hardening Rule
,”
Trans. JWRI
, Vol.
9
, No.
1
, pp.
107
114
.
20.
Wang
K. F.
,
Chandrasekar
S.
, and
Yang
H. T. Y.
,
1993
, “
An Efficient 2D Finite Element Procedure for the Quenching Analysis With Phase Change
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
124
138
.
This content is only available via PDF.
You do not currently have access to this content.