A method using artificial neural networks and inverse kinematics for machine tool error correction is presented. A generalized error model is derived, by using rigid body kinematics, to describe the error motion between the cutting tool and workpiece at discrete temperature conditions. Neural network models are then built to track the time-varying machine tool errors at various thermal conditions. The output of the neural network models can be used to periodically modify, using inverse kinematics technique, the error model’s coefficients as the cutting processes proceeded. Thus, the time-varying positioning errors at other points within the designated workspace can be estimated. Experimental results show that the time-varying machine tool errors can be estimated and corrected with desired accuracy. The estimated errors resulted from the proposed methodology could be used to adjust the depth of cut on the finish pass, or correct the probing data for process-intermittent inspection to improve the accuracy of workpieces.

1.
Balsamo
A.
,
Marques
D.
, and
Sartori
S.
,
1990
, “
A Method for Thermal Deformation Corrections of CMMs
,”
CIRP
, Vol.
39
, No.
1
, pp.
557
560
.
2.
Busch
K.
,
Kunzmann
H.
, and
Waldele
F.
,
1985
, “
Calibration of Coordinate Measuring Machines
,”
Precision Engineering
, Vol.
7
, pp.
139
144
.
3.
Chen
J. S.
,
Yuan
J. S.
,
Ni
J.
, and
Wu
S. M.
,
1992
, “
Compensation of Non-rigid Body Kinematic Effect on a Machining Center
,”
Transaction of the North American Manufacturing Research Institute of SME
, Vol.
20
, pp.
325
329
.
4.
Chen
J. S.
,
Yuan
J. S.
,
Ni
J.
, and
Wu
S. M.
,
1992
, “
Thermal Error Modeling for Volumetric Error Compensation
,”
Sensors and Signal Processing Manufacturing
, PED-Vol.
55
, ASME WAM, pp.
113
125
.
5.
Chen
J. S.
,
Yuan
J. S.
,
Ni
J.
, and
Wu
S. M.
,
1993
, “
Real-time Compensation for Time-variant Volumetric Errors on a Machine Center
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
472
479
.
6.
Donmez
M. A.
,
Blomquist
D. S.
,
Hocken
R. J.
,
Liu
C. R.
, and
Barash
M. M.
,
1986
, “
A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precision Engineering
, Vol.
8
, No.
4
, pp.
187
196
.
7.
Donmez, M. A., Liu, C. R., and Barash, M. M., 1987, “A Generalized Mathematical Model for Machine Tool Errors,” Modeling, Sensing, and Control of Manufacturing Processes, ASME Winter Annual Conference, PED-Vol. 23/DSC-Vol. 4, pp. 231–243.
8.
Duffie
N. A.
, and
Malmberg
S. J.
,
1987
, “
Error Diagnosis and Compensation using Kinematic Model and Position Error Data
,”
CIRP
, Vol.
36
, No.
1
,
355
358
.
9.
Dufour, P., and Groppetti, R., 1981, “Computer Aided Accuracy Improvement in Large NC Machine Tools,” M.T.D.R. Conference Proceedings, Vol. 22, 611–618.
10.
Ferreira
P. M.
, and
Liu
C. R.
,
1986
, “
An Analytical Quadratic Model for the Geometric Error of a Machine Tool
,”
J. of Manufacturing Systems
, Vol.
5
, No.
1
, pp.
51
63
.
11.
Ferreira
P. M.
, and
Liu
C. R.
,
1993
, “
A Method for Estimating and Compensating Quasistatic Errors of Machine Tools
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
149
159
.
12.
Hocken
R. J.
,
Simpson
J. A.
,
Borchardt
B.
,
Lazar
J.
,
Reeve
C.
, and
Stein
P.
,
1977
, “
Three Dimensional Metrology
,”
CIRP
, Vol.
26
, No.
1
, pp.
403
408
.
13.
Hocken, R. J., 1980, “Technology of Machine Tools, Vol. 5: Machine Tool Accuracy,” UCRL-52960-5, Lawrence Livermore Laboratory, University of California, Livermore, California.
14.
Jedrzejewski
J.
,
Kaczmarek
J.
,
Kowal
Z.
, and
Winiarski
Z.
,
1990
, “
Numerical Optimization of Thermal Behaviour of Machine Tools
,”
CIRP
, Vol.
39
, No.
1
, pp.
379
382
.
15.
Kung, S. Y., 1993, Digital Neural Networks, Prentice-Hall Inc., Englewood Cliffs, New Jersey.
16.
Kunzmann
H.
, and
Waldele
F.
,
1983
, “
On Testing Coordinate Measuring Machines (CMM) with Kinematic Reference Standards (KRS)
,”
CIRP
, Vol.
32
, No.
1
, pp.
465
468
.
17.
Kunzmann
H.
,
Trapet
E.
, and
Waldele
F.
,
1990
, “
A Uniform Concept for Calibration, Acceptance Test, and Periodic Inspection of Coordinate Measuring Machines Using Reference Objects
,”
CIRP
, Vol.
39
, No.
1
, pp.
561
564
.
18.
Matsuo
M.
,
Yasui
T.
,
Inamura
T.
, and
Matsumura
M.
,
1986
, “
High Speed Test of Thermal Effects for a Machine-Tool Structure Based on Model Analysis
,”
Precision Engineering
, Vol.
8
, No.
2
, pp.
72
78
.
19.
Mou
J.
, and
Liu
C. R.
,
1992
, “
A Method for Enhancing the Accuracy of CNC Machine Tools for On-Machine Inspection
,”
J. of Manufacturing Systems
, Vol.
11
, No.
4
., pp.
229
237
.
20.
Mou, J., and Liu, C. R., 1994, “A Robust Error Correction Method for Multi-Axis Machines,” Proceedings of Symposium on Mechatronics for Manufacturing of ASME Winter Annual Meeting, DSC-Vol. 55-2, pp. 1011–1018.
21.
National Aerospace Standard, 1969, “Uniform Cutting Tests—NAS Series Metal Cutting Equipment Specifications,” Aerospace Industries Association of America Inc., Washington D.C.
22.
NISTIR, 1989, “Progress Report of the Quality in Automation Project for FY88,” NISTIR 89-4045.
23.
Okushima
K.
,
Kakino
Y.
, and
Higashimoto
A.
,
1975
, “
Compensation of Thermal Displacement by Coordinate System Correction
,”
CIRP
, Vol.
24
, No.
1
, pp.
327
331
.
24.
Sata, T., Takeuchi, Y., Sato, N., and Okubo, N., 1973, “Analysis of Thermal Deformation of Machine Tool Structure and its Application,” M.T.D.R. Conference Proceedings, Vol. 14, pp. 275–279.
25.
Sata, T., Takeuchi, Y., and Okubo, N., 1975, “Control of the Thermal Deformation of a Machine Tool,” M.T.D.R. Conference Proceedings, Vol. 16, pp. 203–208.
26.
Sata
T.
,
Takeuchi
Y.
,
Sakamoto
M.
, and
Week
M.
,
1981
, “
Improvement of Working Accuracy on NC Lathe by Compensation for the Thermal Expansion of Tool
,”
CIRP
, Vol.
30
, No.
1
, pp.
445
449
.
27.
Sheth
P.
, and
Uicker
J.
,
1972
, “
IMP (Integrated Mechanisms Program), a Computer-Aided Design Analysis System for Mechanisms and Linkages
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
94
, pp.
454
464
.
28.
Takeuchi
Y.
,
Sakamoto
M.
, and
Sata
Y.
,
1982
, “
Improvement in the Working Accuracy of an NC Lathe by Compensating for Thermal Expansion
,”
Precision Engineering
, Vol.
4
, No.
1
, pp.
19
24
.
29.
Teeuwsen
J. W. M. C.
,
Soons
J. A.
, and
Schellekens
P. H. J.
,
1989
, “
A General Method for Error Description of CMMs Using Polynomial Fitting Procedures
,”
CIRP
, Vol.
38
, No.
1
, pp.
505
510
.
30.
Venugopal
R.
, and
Barash
M.
,
1986
, “
Thermal Effects on the Accuracy of Numerically Controlled Machine Tools
,”
CIRP
, Vol.
35
, No.
1
, pp.
255
258
.
31.
Week, M., and Zangs, L., 1975, “Computing the Thermal Behavior of Machine Tools Using the Finite Element Method—Possibilities and Limitations,” Proceedings of Mach. Tools Des. and Res. Conference, Vol. 16, pp. 185–193.
This content is only available via PDF.
You do not currently have access to this content.