The development and derivation of an adaptive error correction method using an interactive inspection system and feature-based analysis technique for machine performance improvement were presented in Part 1 of this paper. Here, in Part 2, the experimental verification of the derived feature-based residual error models and analysis technique is described in detail. The experimental procedure and results of both the process-intermittent and the post-process gauging are presented. A polynomial regression method is used to derive the parametric functions that represent the deviation of imperfect features from nominal. The output of these polynomial functions is compared with process-intermittent inspection data to determine the machine errors and then to identify the residual systematic errors. Feature-based residual error models are used to correlate the residual errors to the systematic residual error components. Inverse kinematics technique and multiple regression methods are used to identify and characterize the contribution of each error component as a function of the machine’s temperature profile and nominal position. The residual error components are then combined with the error components identified through the pre-process characterization process to refine the geometric-thermal error model. After the error model is adaptively fine tuned, it can be used more effectively to compensate the machine tool error for more precise manufacturing.

1.
Balsamo
A.
,
Marques
D.
, and
Sartori
S.
,
1990
, “
A Method for Thermal Deformation Corrections of CMMs
,”
CIRP
, Vol.
39
, No.
1
, pp.
557
560
.
2.
Busch
K.
,
Kunzmann
H.
, and
Waldele
F.
,
1985
, “
Calibration of Coordinate Measuring Machines
,”
Precision Engineering
, Vol.
7
, pp.
139
144
.
3.
Chen
J. S.
,
Yuan
J. S.
,
Ni
J.
, and
Wu
S. M.
,
1992
, “
Compensation of Non-rigid Body Kinematic Effect on a Machining Center
,”
Transaction of the North American Manufacturing Research Institute of SME
, Vol.
20
, pp.
325
329
.
4.
Chen, J. S., Yuan, J. S., Ni, J., and Wu, S. M., 1992, “Thermal Error Modeling for Volumetric Error Compensation,” Sensors and Signal Processing for Manufacturing, PED-Vol. 55, ASME WAM, pp. 113–125.
5.
Chen
J. S.
,
Yuan
J. S.
,
Ni
J.
, and
Wu
S. M.
,
1993
, “
Real-time Compensation for Time-variant Volumetric Errors on a Machine Center
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
472
479
.
6.
DMIS, 1990, “DMIS 2.1,” Specification CAM-I Standard 101, CAM-I, Inc., Arlington, TX.
7.
Donmez
M. A.
,
Blomquist
D. S.
,
Hocken
R. J.
,
Liu
C. R.
, and
Barash
M. M.
,
1986
, “
A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precision Engineering
, Vol.
8
, No.
4
, pp.
187
196
.
8.
Donmez, M. A., Liu, C. R., and Barash, M. M., 1987, “A Generalized Mathematical Model for Machine Tool Errors,” Modeling, Sensing, and Control of Manufacturing Processes, ASME Winter Annual Conference, PED-Vol. 23/DSC-Vol. 4, pp. 231–243.
9.
Duffle
N. A.
, and
Malmberg
S. J.
,
1987
, “
Error Diagnosis and Compensation Using Kinematic Model and Position Error Data
,”
CIRP
, Vol.
36
, No.
1
, pp.
355
358
.
10.
Dufour
P.
, and
Groppetti
R.
,
1981
, “
Computer Aided Accuracy Improvement in Large NC Machine Tools
,”
M.T.D.R. Conference Proceedings
, Vol.
22
, pp.
611
618
.
11.
Ferreira
P. M.
, and
Liu
C. R.
,
1986
, “
An Analytical Quadratic Model for the Geometric Error of a Machine Tool
,”
J. of Manufacturing Systems
, Vol.
5
, No.
1
, pp.
51
63
.
12.
Ferreira
P. M.
, and
Liu
C. R.
,
1993
, “
A Method for Estimating and Compensating Quasistatic Errors of Machine Tools
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
115
, pp.
149
159
.
13.
Gilsinn, D. E., Bandy, H. T., Donmez, M. A., Greenspan, L., Harper, K., and Wilkin, N., 1994, “Application of a Generic Machine Tool Error Model to a Turning Center,” NISTIR, to be published.
14.
Jedrzejewski
J.
,
Kaczmarek
J.
,
Kowal
Z.
, and
Winiarski
Z.
,
1990
, “
Numerical Optimization of Thermal Behaviour of Machine Tools
,”
CIRP
, Vol.
39
, No.
1
, pp.
379
382
.
15.
Kunzmann
H.
, and
Waldele
F.
,
1983
, “
On Testing Coordinate Measuring Machines (CMM) with Kinematic Reference Standards (KRS)
,”
CIRP
, Vol.
32
, No.
1
, pp.
465
468
.
16.
Kunzmann
H.
,
Trapet
E.
, and
Waldele
F.
,
1990
, “
A Uniform Concept for Calibration, Acceptance Test, and Periodic Inspection of Coordinate Measuring Machines Using Reference Objects
,”
CIRP
, Vol.
39
, No.
1
, pp.
561
564
.
17.
Matsuo
M.
,
Yasui
T.
,
Inamura
T.
, and
Matsumura
M.
,
1986
, “
High Speed Test of Thermal Effects for a Machine-Tool Structure Based on Model Analysis
,”
Precision Engineering
, Vol.
8
, No.
2
, pp.
72
78
.
18.
Mou
J.
,
Donmez
M. A.
, and
Cetinkunt
S.
,
1995
, “
An Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement, Part 1: Theory Derivation
,”
ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol.
117
, No.
3
, November, pp.
584
590
.
19.
NISTIR, 1989, “Progress Report of the Quality in Automation Project for FY88,” C. D. Lovett, ed., NISTIR 4045.
20.
NISTIR, 1990, “Progress Report of the Quality in Automation Project for FY89,” T. V. Vorburger and B. Scace, eds., NISTIR 4322.
21.
NISTIR, 1991, “Progress Report of the Quality in Automation Project for FY90,” M. A. Donmez, ed., NISTIR 4536.
22.
Okushima
K.
,
Kakino
Y.
, and
Higashimoto
A.
,
1975
, “
Compensation of Thermal Displacement by Coordinate System Correction
,”
CIRP
, Vol.
24
, No.
1
, pp.
327
331
.
23.
Roe
J.
,
1986
, “
Probing for Precision and Productivity
,”
Biennial International Machine Tool Technical Conference
, Vol.
12
, pp.
173
180
.
24.
Sata
T.
,
Takeuchi
Y.
,
Sato
N.
, and
Okubo
N.
,
1973
, “
Analysis of Thermal Deformation of Machine Tool Structure and its Application
,”
M.T.D.R. Conference Proceedings
, Vol.
14
, pp.
275
279
.
25.
Sata
T.
,
Takeuchi
Y.
, and
Okubo
N.
,
1975
, “
Control of the Thermal Deformation of a Machine Tool
,”
M.T.D.R. Conference Proceedings
, Vol.
16
, pp.
203
208
.
26.
Sata
T.
,
Takeuchi
Y.
,
Sakamoto
M.
, and
Week
M.
,
1981
, “
Improvement of Working Accuracy on NC Lathe by Compensation for the Thermal Expansion of Tool
,”
CIRP
, Vol.
30
, No.
1
, pp.
445
449
.
27.
Takeuchi
Y.
,
Sakamoto
M.
, and
Sata
Y.
,
1982
, “
Improvement in the Working Accuracy of an NC Lathe by Compensating for Thermal Expansion
,”
Precision Engineering
, Vol.
4
, No.
1
, pp.
19
24
.
28.
Teeuwsen
J. W. M. C.
,
Soons
J. A.
, and
Schellekens
P. H. J.
,
1989
, “
A General Method for Error Description of CMMs Using Polynomial Fitting Procedures
,”
CIRP
, Vol.
38
, No.
1
, pp.
505
510
.
29.
Venugopal
R.
, and
Barash
M.
,
1986
, “
Thermal Effects on the Accuracy of Numerically Controlled Machine Tools
,”
CIRP
, Vol.
35
, No.
1
, pp.
255
258
.
30.
Weck
M.
, and
Zangs
L.
,
1975
, “
Computing the Thermal Behavior of Machine Tools Using the Finite Element Method—Possibilities and Limitations
,”
Proceedings of Mach. Tools Des. and Res. Conference
, Vol.
16
, pp.
185
193
.
31.
Yee, K. W., and Gavin, R. J., 1990, “Implementing Fast Part Probing and Error Compensation on Machine Tools,” NISTIR 4447.
32.
Yee, K. W., Bandy, H. T., Boudreaux, J., and Wilkin, N. D., 1992, “Automated Compensation of Part Errors Determined by In-Process Gauging,” NISTIR 4854.
This content is only available via PDF.
You do not currently have access to this content.