Distribution of thermal energy in the workpiece during cutting with an abrasive waterjet (AWJ) was studied experimentally. Detailed time-temperature measurements in the workpiece as a function of jet pressure, traverse rate, workpiece material, and workpiece orientation were performed. It is shown that maximum temperatures occur at the immediate vicinity of the cutting interface and sharply decay thereafter with increasing distance from the interface. A higher jet pressure and/or a lower traverse speed results in higher temperatures in the workpiece. A material with higher thermal conductivity experiences higher temperatures during the cut. Within the workpiece, higher temperatures occur at inner zones where the jet-induced cooling effects are minimum.

This content is only available via PDF.
You do not currently have access to this content.