A new concept is taken to develop a comprehensive cutting force model for analyzing the dynamic behavior of the machining process. The model is derived based on the principles of the cutting mechanics, and takes into account the fluctuation of the mean factional coefficient on the tool-chip interface as well as the variations of the normal hydrostatic pressure distribution and the shear flow stress along the primary plastic deformation zone. The model has been tested through computer simulation for orthogonal wave-removing processes by reference to an existing experimental evidence. The result indicates a generally good agreement with the theoretical predictions except that the amplitude of the force variation in the feeding direction appears to be underestimated. An explanation is also given.

This content is only available via PDF.
You do not currently have access to this content.