Facing and taper turning tests (also known as accelerated cutting tests) are commonly used for the evaluation of machinability of materials. Of late, it has been reported that instantaneous values of tool-chip interface temperature, tool wear, shear angle, etc, in longitudinal turning are different from the corresponding values in accelerated cutting. This effect has been attributed to shear strain acceleration phenomenon. Materials behavior during accelerated cutting changes in a manner different than that in longitudinal turning. To test this hypothesis, experiments have been conducted using HSS as tool material and mild steel as work material. It has been concluded that shear flow stress during accelerated cutting is governed by shear strain acceleration and its governing parameters. Shear flow stress value is highest during facing, lowest in taper turning and in between the two during longitudinal turning.

This content is only available via PDF.
You do not currently have access to this content.