A kinematically admissible velocity field is derived for a proposed arbitrarily inclined triangular UBET element. The method is applied to combined forging to show the flexibility of application. From the derived velocity fields upper-bound loads on the punch and deformed configurations are determined by optimizing some given parameters related with geometry and velocity field. Experiments on combined forging are carried out with annealed Al-2024 billets at room temperature for several punch shapes. The theoretical predictions both in the forming load and deformed configuration are in good agreement with the experimental results. It is shown that arbitrarily inclined triangular elements proposed in this work can effectively be used for the prediction of the forming load and deformation in combined forging and can be applied to other forming processes with flexibility.

This content is only available via PDF.
You do not currently have access to this content.