In the metal machining operation, material is deformed at high rates in thin plastic zones. This paper explores the possibility that the features of such shear zones can be described by a theory for plastic boundary layers. The analysis draws on Oldroyd’s solution for the two-dimensional plastic flow of a Bingham solid over a flat knife. The way in which such a solution can be adapted to both the secondary and primary deformation zones in machining is described. A theoretical equation is derived that uses material properties to predict the tool-face pressure gradient along the contact length. An analysis for brass gives very good agreement between this approach and the experimental data for the tool-face pressure gradient obtained by Rowe and Wilcox.

This content is only available via PDF.
You do not currently have access to this content.