Graphical Abstract Figure

Field testing of the SFR GNC

Graphical Abstract Figure

Field testing of the SFR GNC

Close modal

Abstract

The sample fetch rover (SFR) is a novel surface vehicle studied for Mars sample return (MSR). The rover is designed as a multi-mission transportation system with no scientific payloads on board and the only objective of acquiring sample tubes previously deposited on the surface and delivering them to a lander in a strict timeframe. Its mission imposes demanding requirements, such as traverse distance, timeline, mass, volume, and energy, which necessitate the development of new technologies or the augmentation of existing ones. Following the decision not to implement SFR in the MSR campaign, these technologies are becoming attractive for future rover missions to Mars and to the Moon. This paper summarizes the development of these technologies and their applicability to future use cases. The SFR mission profile and design drivers are described herein, along with the system architecture established in response to them. What follows is an overview of the key technologies studied for SFR, focusing on the most critical or innovative ones, such as locomotion, navigation, and sample tube acquisition. The summary includes the other significant aspects of the design: structure, thermal control, mechanisms, control electronics, power, avionics, and communications. For each of these, the main technological advancements and their relevance to forthcoming rover missions are discussed.

References

1.
Muirhead
,
B. K.
,
Nicholas
,
A. K.
,
Edwards
,
C.
,
Umland
,
J.
,
Vijendran
,
S.
, and
Zurek
,
R.
,
2021
, “
Mars Sample Return Campaign Concept Architecture
,”
Planetary Science and Astrobiology Decadal Survey 2023–2032
.
2.
Ridolfi
,
P.
,
Allouis
,
E.
,
Boyes
,
B.
,
Hamilton
,
W.
,
Michelin
,
J.
,
Norridge
,
P.
,
Pulker
,
S.
,
Tamkin
,
L.
, and
Wayman
,
A.
,
2023
, “
A Miniaturised Fetch Rover Concept for Mars Sample Return
,”
Acta Astronaut.
,
206
, pp.
168
176
.
3.
Azkarate
,
M.
,
Gerdes
,
L.
,
Wiese
,
T.
,
Zwick
,
M.
,
Pagnamenta
,
M.
,
Hidalgo-Carrió
,
J.
,
Poulakis
,
P.
, and
Pérez-del-Pulgar
,
C. J.
,
2022
, “
Design, Testing and Evolution of Mars Rover Testbeds
,”
IEEE Rob. Autom. Mag.
,
29
(
3
), pp.
10
23
.
4.
Matijevic
,
J.
,
1997
, Sojourner: The Mars Pathfinder Microrover Flight Experiment.
5.
Maimone
,
M.
,
Biesiadecki
,
J.
,
Tunstel
,
E.
,
Cheng
,
Y.
, and
Leger
,
C.
,
2006
, “Surface Navigation and Mobility Intelligence on the Mars Exploration Rovers,”
Intelligence for Space Robotics
.
6.
NASA
, “
Mars Science Laboratory: Curiosity Rover
”, https://solarsystem.nasa.gov/docs/MSLLithoSet2013.pdf
7.
Tian
,
H.
,
Zhang
,
T.
,
Jia
,
Z.
,
Peng
,
S.
, and
Yan
,
C.
,
2021
, “
Zhurong: Features and Mission of China's First Mars Rover
,”
The Innov.
,
2
(
3
), p.
100121
.
8.
NASA
, “
Mars 2020/Perseverance
”,
NASAfacts
, https://mars.nasa.gov/files/mars2020/Mars2020_Fact_Sheet.pdf
9.
Padula
,
S. A.
,
Benzing
,
J.
, and
Asnani
,
V. M.
,
2019
, “
Superelastic Tire
,”
U.S. Patent 10 449 804 B1
.
10.
Grandy
,
D.
,
Panek
,
N.
,
Routhier
,
G.
, and
Ridolfi
,
P.
,
2019
, “
Development and Qualification of the ExoMars Bogie Electro-Mechanical Assembly (BEMA) Rotary Actuators
,”
Presented at the 18th European Space Mechanisms and Tribology Symposium (ESMATS)
,
Munich, Germany
,
Sep. 18–20
.
11.
Ghotbi
,
B.
,
Verzijlenberg
,
B.
,
Philip
,
A.
,
Jessen
,
S.
,
Nayeer
,
N.
, and
Schmidt
,
M.
,
2022
, “
CHABLIS—A Mobility Breadboard Vehicle for the ESA's Mars Sample Return Sample Fetch Rover
,”
Presented at the 16th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijck, The Netherlands
,
June 1–2
.
12.
Ridolfi
,
P.
,
Pecover
,
D.
,
Pulker
,
S.
,
Wayman
,
A.
,
Zekri
,
E.
,
Zwick
,
M.
,
Do
,
S.
, et al
,
2021
, “
Development of the Sample Fetch Rover Locomotion Subsystem
,”
Presented at the 72nd International Astronautical Congress (IAC)
,
Dubai, UAE
,
Oct. 25–29
.
13.
Winter
,
M.
,
Barclay
,
C.
,
Pereira
,
V.
,
Lancaster
,
R.
,
Caceres
,
M.
,
McManamon
,
K.
,
Nye
,
B.
,
Silva
,
N.
,
Lachat
,
D.
, and
Campana
,
M.
,
2015
, “
ExoMars Rover Vehicle: Detailed Description of the GNC System
,”
Presented at the 13th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijck, The Netherlands
,
May 11–13
.
14.
Dinsdale
,
M.
,
Hamilton
,
W.
,
Marc
,
R.
,
Weclewski
,
P.
,
Dysli
,
A.
,
Barclay
,
C.
,
Daoud-Moraru
,
A.
, et al
,
2022
, “
Absolute Localisation by Map Matching for Sample Fetch Rover
,”
Presented at the 16th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijck, The Netherlands
,
June 1–2
.
15.
Weclewski
,
P.
,
Marc
,
R.
,
Brayzier
,
B.
,
Hamilton
,
W.
,
Barclay
,
C.
,
Dinsdale
,
M.
,
Daoud-Moraru
,
A.
, et al
,
2022
, “
Sample Fetch Rover Guidance, Navigation and Control Subsystem—An Overview
,”
Presented at the 16th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijck, The Netherlands
,
June 1–2
.
16.
Rusconi
,
A.
,
Magnani
,
P.
,
Michaud
,
S.
,
Gruener
,
G.
,
Terrien
,
G.
, and
Merlo
,
A.
,
2015
, “
DExtrous LIghtweigh Arm for ExploratioN (DELIAN)
,”
Presented at the 13th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijck, The Netherlands
,
May 11–13
.
17.
Pilati
,
A.
,
Cavenago
,
F.
,
Sisinni
,
M.
,
Rusconi
,
A.
,
Sangiovanni
,
G.
,
Poulakis
,
P.
,
Allouis
,
E.
,
Costello
,
I.
, and
Camanes
,
C.
,
2022
, “
Breadboard Testing Activities of the Arm and Gripper Subsystem for Mars Sample Retrieval
,”
Presented at the 16th Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijck, The Netherlands
,
June 1–2
.
18.
Prado-Montes
,
P.
,
Campo
,
S.
,
García
,
A.
,
Torres
,
A.
,
Munì
,
M.
, and
Negri
,
F.
,
2017
, “
ExoMars 2020 LHPs: From the Concept to the Flight Models
,”
Presented at the 47th International Conference on Environmental Systems
,
Charleston, SC
,
July 16
.
19.
Ferrando
,
E.
,
Zanella
,
P.
,
Riva
,
S.
,
Damonte
,
G.
,
Romani
,
R.
, and
Ferrante
,
L.
,
2016
, “
Photovoltaic Assemblies for the Power Generation of the ExoMars Missions
,”
Presented at the 11th European Space Power Conference
,
Thessaloniki, Greece
,
Oct. 3–7
.
20.
Amos
,
S.
, and
Brochard
,
P.
,
2016
, “
Battery for Extended Temperature Range, ExoMars Rover Mission
,”
Presented at the 11th European Space Power Conference
,
Thessaloniki, Greece
,
Oct. 3–7
.
21.
Hult
,
T.
,
Petersén
,
A.
,
Dean
,
B.
, and
Winton
,
A.
,
2010
, “
The ExoMars Rover Vehicle OBC
,”
Presented at the 15th Data Systems in Aerospace (DASIA) Conference
,
Budapest, Hungary
,
June 1–4
.
You do not currently have access to this content.