Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: second life batteries
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
Letters Dyn. Sys. Control. January 2021, 1(1): 011014.
Paper No: ALDSC-19-1144
Published Online: March 26, 2020
... second life batteries (SLBs) in power systems, such as the definition of a systematic approach for the concurrent optimization of performance and lifetime with the aim of minimizing the investment and operating costs. This paper proposes the application of automotive SLBs to DCFC stations where high...
Abstract
Electrified vehicle (EV) batteries that have reached the automotive end of life are providing a low-cost energy storage solution for grid-connected systems, such as DC fast charge stations (DCFCs). There are several challenges associated with the integration of second life batteries (SLBs) in power systems, such as the definition of a systematic approach for the concurrent optimization of performance and lifetime with the aim of minimizing the investment and operating costs. This paper proposes the application of automotive SLBs to DCFC stations where high-power grid connection is not available or feasible. The SLBs are charged using a low-power grid connection and then provide DCFC power to the EVs. An optimal control problem has been formulated to identify the energy management control (EMC) strategy that allows minimizing the replacement rate of the SLBs, while ensuring the EV load request is match.