Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: robot path planning
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
Letters Dyn. Sys. Control. January 2021, 1(1): 011012.
Paper No: ALDSC-19-1126
Published Online: March 26, 2020
...Weitian Wang; Yi Chen; Yunyi Jia In human–robot collaborative tasks, the performance of robot path planning has a direct impact on the robot-to-human hand-over process, or even the collaboration quality. In this work, we propose an evaluation study on multiple robot path planners with different...
Abstract
In human–robot collaborative tasks, the performance of robot path planning has a direct impact on the robot-to-human hand-over process, or even the collaboration quality. In this work, we propose an evaluation study on multiple robot path planners with different metrics and reveal their pros and cons in representative human–robot collaborative manufacturing contexts. Afterward, based on the proposed metrics, we define a cost function for the dual-arm robot to choose optimized path planning solutions with maximum efficiency for its human partner in human–robot collaboration. We implement the proposed evaluation and optimization approaches to multiple realistic human–robot collaborative manufacturing contexts. Experimental results and evaluations suggest that our approaches are able to provide positive solutions for the robot path planner selection and also open a window for exploring more complicated and general robot path planning applications to human–robot collaborative tasks in smart manufacturing contexts.