Abstract

There has been an increasing attention toward the research of space manipulator systems for different applications like on-orbit servicing, debris removal, etc. from various institutions across the globe. This resulted in the trend of investigating simple methods to couple various manipulator and base/spacecraft pose control methodologies that already exist independently in the literature. One such scientific work in this direction proposed a control strategy for purely manipulator end-effector trajectory tracking control, while the base/spacecraft is station-kept. This article investigates the generalizability of the control strategy proposed by the scientific work for various space manipulation applications.

References

1.
Papadopoulos
,
E.
,
Aghili
,
F.
,
Ma
,
O.
, and
Lampariello
,
R.
,
2021
, “
Robotic Manipulation and Capture in Space: A Survey
,”
Frontiers in Robotics and AI
,
8
.
2.
Luo
,
Z.
, and
Sakawa
,
Y.
,
1990
, “
Control of a Space Manipulator for Capturing a Tumbling Object
,”
29th IEEE Conference on Decision and Control
,
Honolulu, HI
,
Dec. 5–7
, Vol. 1, pp.
103
108
.
3.
Papadopoulos
,
E.
, and
Moosavian
,
S.
,
1994
, “
Dynamics and Control of Multi-Arm Space Robots During Chase and Capture Operations
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94)
,
Munich, Germany
,
Sept. 12–16
, Vol. 3, pp.
1554
1561
.
4.
Nagamatsu
,
H.
,
Kubota
,
T.
, and
Nakatani
,
I.
,
1996
, “
Capture Strategy for Retrieval of a Tumbling Satellite by a Space Robotic Manipulator
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, Vol. 1, pp.
70
75
.
5.
Aghili
,
F.
,
2008
, “
Optimal Control for Robotic Capturing and Passivation of a Tumbling Satellite With Unknown Dynamics
,” AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, Aug. 18–21.
6.
Aghili
,
F.
,
2009
, “
Optimal Control of a Space Manipulator for Detumbling of a Target Satellite
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
3019
3024
.
7.
Shi
,
L.
,
Katupitiya
,
J.
, and
Kinkaid
,
N. M.
,
2018
, “
Hybrid Control of Space Robot in On-Orbit Screw-Driving Operation
,”
IEEE Trans. Aerosp. Electron. Syst.
,
54
(
3
), pp.
1253
1264
.
8.
Zhou
,
D.
,
Wang
,
L.
, and
Zhang
,
Q.
,
2016
, “
Obstacle Avoidance Planning of Space Manipulator End-Effector Based on Improved Ant Colony Algorithm
,”
SpringerPlus
,
5
(
1
), p.
509
.
9.
Li
,
Y.
,
Xu
,
Z.
,
Yang
,
X.
,
Zhao
,
Z.
,
Zhuang
,
L.
,
Zhao
,
J.
, and
Liu
,
H.
,
2024
, “
Identification and High-Precision Trajectory Tracking Control for Space Robotic Manipulator
,”
Acta Astronaut.
,
214
, pp.
484
495
.
10.
Zhou
,
Y.
,
Luo
,
J.
, and
Wang
,
M.
,
2024
, “
Adaptive Detumbling Control of Dual-Arm Space Robot After Capturing Non-Cooperative Target
,”
Adv. Space Res.
,
73
(
1
), pp.
108
125
.
11.
Qu
,
Z.
,
Dorsey
,
J. F.
,
Zhang
,
X.
, and
Dawson
,
D. M.
,
1991
, “
Robust Control of Robots by the Computed Torque Law
,”
Syst. Control Lett.
,
16
(
1
), pp.
25
32
.
12.
Aristidou
,
A.
, and
Lasenby
,
J.
,
2009
, “Inverse Kinematics: A Review of Existing Techniques and Introduction of a New Fast Iterative Solver,” CUED/F-INFENG/TR, Department of Engineering, University of Cambridge, Cambridge, UK.
13.
Khatib
,
O.
,
1987
, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
,
3
(
1
), pp.
43
53
.
14.
Aderajew Ashagrie
,
A. O. S.
, and
Weldcherkos
,
T.
,
2021
, “
Modeling and Control of a 3-DOF Articulated Robotic Manipulator Using Self-Tuning Fuzzy Sliding Mode Controller
,”
Cogent Eng.
,
8
(
1
), p.
1950105
.
15.
Tang
,
L.
, and
Liu
,
Y.-J.
,
2014
, “
Adaptive Neural Network Control of Robot Manipulator Using Reinforcement Learning
,”
J. Vib. Control
,
20
(
14
), pp.
2162
2171
.
16.
Suomalainen
,
M.
,
Karayiannidis
,
Y.
, and
Kyrki
,
V.
,
2022
, “
A Survey of Robot Manipulation in Contact
,”
Rob. Auton. Syst.
,
156
, p.
104224
.
17.
Han
,
D.
,
Duan
,
X.
,
Li
,
M.
,
Cui
,
T.
,
Ma
,
A.
, and
Ma
,
X.
,
2017
, “
Interaction Control for Manipulator With Compliant End-Effector Based on Hybrid Position-Force Control
,”
2017 IEEE International Conference on Mechatronics and Automation (ICMA)
,
Takamatsu, Japan
,
Aug. 6–9
, pp.
863
868
.
18.
Xie
,
Z.
,
Jin
,
L.
, and
Luo
,
X.
,
2023
, “
Kinematics-Based Motion-Force Control for Redundant Manipulators With Quaternion Control
,”
IEEE Trans. Autom. Sci. Eng.
,
20
(
3
), pp.
1815
1828
.
19.
Dong
,
Y.
,
Ren
,
T.
,
Wu
,
D.
, and
Chen
,
K.
,
2020
, “
Compliance Control for Robot Manipulation in Contact With a Varied Environment Based on a New Joint Torque Controller
,”
J. Intell. Rob. Syst.
,
99
(
1
), pp.
79
90
.
20.
Nakamura
,
Y.
,
Hanafusa
,
H.
, and
Yoshikawa
,
T.
,
1987
, “
Task-Priority Based Redundancy Control of Robot Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
3
15
.
21.
Flacco
,
F.
, and
De Luca
,
A.
,
2015
, “
Discrete-Time Redundancy Resolution at the Velocity Level With Acceleration/Torque Optimization Properties
,”
Rob. Auton. Syst.
,
70
, pp.
191
201
.
22.
Atawnih
,
A.
,
Papageorgiou
,
D.
, and
Doulgeri
,
Z.
,
2016
, “
Kinematic Control of Redundant Robots With Guaranteed Joint Limit Avoidance
,”
Rob. Auton. Syst.
,
79
, pp.
122
131
.
23.
Zhao
,
M.
, and
Lv
,
X.
,
2020
, “
Improved Manipulator Obstacle Avoidance Path Planning Based on Potential Field Method
,”
J. Rob.
,
2020
(
1
), p.
1701943
.
24.
Yang
,
P.
,
Shen
,
F.
,
Xu
,
D.
,
Chen
,
B.
,
Liu
,
R.
, and
Wang
,
H.
,
2024
, “
An Obstacle-Avoidance Inverse Kinematics Method for Robotic Manipulator in Overhead Multi-Line Environment
,”
Eng. Sci. Technol., an Int. J.
,
53
, p.
101686
.
25.
Cohen
,
A.
,
Taub
,
B.
, and
Shoham
,
M.
,
2023
, “
Dual Quaternions Representation of Lagrange’s Dynamic Equations
,”
ASME. J. Mech. Rob.
,
16
(
4
), p.
041004
.
26.
Valverde
,
A.
, and
Tsiotras
,
P.
,
2018
, “
Dual Quaternion Framework for Modeling of Spacecraft-Mounted Multibody Robotic Systems
,”
Front. Rob. AI
,
5
.
27.
Craig
,
J. J.
,
2006
,
Introduction to Robotics: Mechanics and Control
,
Pearson Education
,
Hoboken, NJ
.
28.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
Berlin
.
29.
Wilde
,
M.
,
Kwok Choon
,
S.
,
Grompone
,
A.
, and
Romano
,
M.
,
2018
, “
Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer’s Tutorial
,”
Front. Rob. AI
,
5
.
30.
Yoshida
,
K.
, and
Wilcox
,
B.
,
2008
,
Space Robots and Systems
,
Springer
,
Berlin, Heidelberg
, pp.
1031
1063
.
31.
Antonello
,
A.
,
Valverde
,
A.
, and
Tsiotras
,
P.
,
2019
, “
Dynamics and Control of Spacecraft Manipulators With Thrusters and Momentum Exchange Devices
,”
J. Guid. Control Dyn.
,
42
(
1
), pp.
15
29
.
32.
Falco
,
P.
, and
Natale
,
C.
,
2014
, “
Low-Level Flexible Planning for Mobile Manipulators: A Distributed Perception Approach
,”
Adv. Rob.
,
28
(
21
), pp.
1431
1444
.
33.
Simetti
,
E.
,
Casalino
,
G.
,
Wanderlingh
,
F.
, and
Aicardi
,
M.
,
2019
, “
A Task Priority Approach to Cooperative Mobile Manipulation: Theory and Experiments
,”
Rob. Auton. Syst.
,
122
, p.
103287
.
34.
Karami
,
A.
,
Sadeghian
,
H.
,
Keshmiri
,
M.
, and
Oriolo
,
G.
,
2018
, “
Hierarchical Tracking Task Control in Redundant Manipulators With Compliance Control in the Null-Space
,”
Mechatronics
,
55
, pp.
171
179
.
You do not currently have access to this content.