Abstract
There has been an increasing attention toward the research of space manipulator systems for different applications like on-orbit servicing, debris removal, etc. from various institutions across the globe. This resulted in the trend of investigating simple methods to couple various manipulator and base/spacecraft pose control methodologies that already exist independently in the literature. One such scientific work in this direction proposed a control strategy for purely manipulator end-effector trajectory tracking control, while the base/spacecraft is station-kept. This article investigates the generalizability of the control strategy proposed by the scientific work for various space manipulation applications.
Issue Section:
Research Papers
Keywords:
space manipulator systems,
space manipulation,
simulations,
multibody dynamics and control,
on-orbit servicing,
debris removal,
aerospace systems,
collision avoidance,
complex systems,
control applications,
dynamics and control,
motion controls,
nonlinear control,
robotics,
spacecraft control
References
1.
Papadopoulos
, E.
, Aghili
, F.
, Ma
, O.
, and Lampariello
, R.
, 2021
, “Robotic Manipulation and Capture in Space: A Survey
,” Frontiers in Robotics and AI
, 8
. 2.
Luo
, Z.
, and Sakawa
, Y.
, 1990
, “Control of a Space Manipulator for Capturing a Tumbling Object
,” 29th IEEE Conference on Decision and Control
, Honolulu, HI
, Dec. 5–7
, Vol. 1, pp. 103
–108
.3.
Papadopoulos
, E.
, and Moosavian
, S.
, 1994
, “Dynamics and Control of Multi-Arm Space Robots During Chase and Capture Operations
,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’94)
, Munich, Germany
, Sept. 12–16
, Vol. 3, pp. 1554
–1561
.4.
Nagamatsu
, H.
, Kubota
, T.
, and Nakatani
, I.
, 1996
, “Capture Strategy for Retrieval of a Tumbling Satellite by a Space Robotic Manipulator
,” Proceedings of IEEE International Conference on Robotics and Automation
, Minneapolis, MN
, Apr. 22–28
, Vol. 1, pp. 70
–75
.5.
Aghili
, F.
, 2008
, “Optimal Control for Robotic Capturing and Passivation of a Tumbling Satellite With Unknown Dynamics
,” AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, Aug. 18–21.6.
Aghili
, F.
, 2009
, “Optimal Control of a Space Manipulator for Detumbling of a Target Satellite
,” 2009 IEEE International Conference on Robotics and Automation
, Kobe, Japan
, May 12–17
, pp. 3019
–3024
.7.
Shi
, L.
, Katupitiya
, J.
, and Kinkaid
, N. M.
, 2018
, “Hybrid Control of Space Robot in On-Orbit Screw-Driving Operation
,” IEEE Trans. Aerosp. Electron. Syst.
, 54
(3
), pp. 1253
–1264
. 8.
Zhou
, D.
, Wang
, L.
, and Zhang
, Q.
, 2016
, “Obstacle Avoidance Planning of Space Manipulator End-Effector Based on Improved Ant Colony Algorithm
,” SpringerPlus
, 5
(1
), p. 509
. 9.
Li
, Y.
, Xu
, Z.
, Yang
, X.
, Zhao
, Z.
, Zhuang
, L.
, Zhao
, J.
, and Liu
, H.
, 2024
, “Identification and High-Precision Trajectory Tracking Control for Space Robotic Manipulator
,” Acta Astronaut.
, 214
, pp. 484
–495
. 10.
Zhou
, Y.
, Luo
, J.
, and Wang
, M.
, 2024
, “Adaptive Detumbling Control of Dual-Arm Space Robot After Capturing Non-Cooperative Target
,” Adv. Space Res.
, 73
(1
), pp. 108
–125
. 11.
Qu
, Z.
, Dorsey
, J. F.
, Zhang
, X.
, and Dawson
, D. M.
, 1991
, “Robust Control of Robots by the Computed Torque Law
,” Syst. Control Lett.
, 16
(1
), pp. 25
–32
. 12.
Aristidou
, A.
, and Lasenby
, J.
, 2009
, “Inverse Kinematics: A Review of Existing Techniques and Introduction of a New Fast Iterative Solver,” CUED/F-INFENG/TR, Department of Engineering, University of Cambridge, Cambridge, UK.13.
Khatib
, O.
, 1987
, “A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,” IEEE J. Rob. Autom.
, 3
(1
), pp. 43
–53
. 14.
Aderajew Ashagrie
, A. O. S.
, and Weldcherkos
, T.
, 2021
, “Modeling and Control of a 3-DOF Articulated Robotic Manipulator Using Self-Tuning Fuzzy Sliding Mode Controller
,” Cogent Eng.
, 8
(1
), p. 1950105
. 15.
Tang
, L.
, and Liu
, Y.-J.
, 2014
, “Adaptive Neural Network Control of Robot Manipulator Using Reinforcement Learning
,” J. Vib. Control
, 20
(14
), pp. 2162
–2171
. 16.
Suomalainen
, M.
, Karayiannidis
, Y.
, and Kyrki
, V.
, 2022
, “A Survey of Robot Manipulation in Contact
,” Rob. Auton. Syst.
, 156
, p. 104224
. 17.
Han
, D.
, Duan
, X.
, Li
, M.
, Cui
, T.
, Ma
, A.
, and Ma
, X.
, 2017
, “Interaction Control for Manipulator With Compliant End-Effector Based on Hybrid Position-Force Control
,” 2017 IEEE International Conference on Mechatronics and Automation (ICMA)
, Takamatsu, Japan
, Aug. 6–9
, pp. 863
–868
.18.
Xie
, Z.
, Jin
, L.
, and Luo
, X.
, 2023
, “Kinematics-Based Motion-Force Control for Redundant Manipulators With Quaternion Control
,” IEEE Trans. Autom. Sci. Eng.
, 20
(3
), pp. 1815
–1828
. 19.
Dong
, Y.
, Ren
, T.
, Wu
, D.
, and Chen
, K.
, 2020
, “Compliance Control for Robot Manipulation in Contact With a Varied Environment Based on a New Joint Torque Controller
,” J. Intell. Rob. Syst.
, 99
(1
), pp. 79
–90
. 20.
Nakamura
, Y.
, Hanafusa
, H.
, and Yoshikawa
, T.
, 1987
, “Task-Priority Based Redundancy Control of Robot Manipulators
,” Int. J. Rob. Res.
, 6
(2
), pp. 3
–15
. 21.
Flacco
, F.
, and De Luca
, A.
, 2015
, “Discrete-Time Redundancy Resolution at the Velocity Level With Acceleration/Torque Optimization Properties
,” Rob. Auton. Syst.
, 70
, pp. 191
–201
. 22.
Atawnih
, A.
, Papageorgiou
, D.
, and Doulgeri
, Z.
, 2016
, “Kinematic Control of Redundant Robots With Guaranteed Joint Limit Avoidance
,” Rob. Auton. Syst.
, 79
, pp. 122
–131
. 23.
Zhao
, M.
, and Lv
, X.
, 2020
, “Improved Manipulator Obstacle Avoidance Path Planning Based on Potential Field Method
,” J. Rob.
, 2020
(1
), p. 1701943
. 24.
Yang
, P.
, Shen
, F.
, Xu
, D.
, Chen
, B.
, Liu
, R.
, and Wang
, H.
, 2024
, “An Obstacle-Avoidance Inverse Kinematics Method for Robotic Manipulator in Overhead Multi-Line Environment
,” Eng. Sci. Technol., an Int. J.
, 53
, p. 101686
. 25.
Cohen
, A.
, Taub
, B.
, and Shoham
, M.
, 2023
, “Dual Quaternions Representation of Lagrange’s Dynamic Equations
,” ASME. J. Mech. Rob.
, 16
(4
), p. 041004
. 26.
Valverde
, A.
, and Tsiotras
, P.
, 2018
, “Dual Quaternion Framework for Modeling of Spacecraft-Mounted Multibody Robotic Systems
,” Front. Rob. AI
, 5
. 27.
Craig
, J. J.
, 2006
, Introduction to Robotics: Mechanics and Control
, Pearson Education
, Hoboken, NJ
.28.
Featherstone
, R.
, 2008
, Rigid Body Dynamics Algorithms
, Springer
, Berlin
.29.
Wilde
, M.
, Kwok Choon
, S.
, Grompone
, A.
, and Romano
, M.
, 2018
, “Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer’s Tutorial
,” Front. Rob. AI
, 5
. 30.
Yoshida
, K.
, and Wilcox
, B.
, 2008
, Space Robots and Systems
, Springer
, Berlin, Heidelberg
, pp. 1031
–1063
.31.
Antonello
, A.
, Valverde
, A.
, and Tsiotras
, P.
, 2019
, “Dynamics and Control of Spacecraft Manipulators With Thrusters and Momentum Exchange Devices
,” J. Guid. Control Dyn.
, 42
(1
), pp. 15
–29
. 32.
Falco
, P.
, and Natale
, C.
, 2014
, “Low-Level Flexible Planning for Mobile Manipulators: A Distributed Perception Approach
,” Adv. Rob.
, 28
(21
), pp. 1431
–1444
. 33.
Simetti
, E.
, Casalino
, G.
, Wanderlingh
, F.
, and Aicardi
, M.
, 2019
, “A Task Priority Approach to Cooperative Mobile Manipulation: Theory and Experiments
,” Rob. Auton. Syst.
, 122
, p. 103287
. 34.
Karami
, A.
, Sadeghian
, H.
, Keshmiri
, M.
, and Oriolo
, G.
, 2018
, “Hierarchical Tracking Task Control in Redundant Manipulators With Compliance Control in the Null-Space
,” Mechatronics
, 55
, pp. 171
–179
. Copyright © 2025 by ASME
You do not currently have access to this content.