Abstract

This paper proposes rapid and accurate short circuit estimation under resting condition using joint moving horizon estimation (MHE). The use of lithium-ion batteries (LiBs) in electric vehicles (EVs) has been increasing, leading to heightened concerns regarding the safety of LiBs. Detecting a short circuit, which is a major cause of safety incidents, is challenging when it is in its early stages. Therefore, short circuits should be detected swiftly and accurately to prevent thermal runaway and potential fires, property damage, injuries, and mortalities. During leak testing of new cells or often an EV crash, applied current may be zero and parameters unknown. The presented work addresses these challenges through the application of a joint MHE approach, to estimate both short circuit current and battery capacity. The proposed approach is evaluated through extensive simulations involving various short circuit scenarios and is compared to a joint extended Kalman filter and joint unscented Kalman filter. Experimental data are also used to validate the effectiveness of states and parameters estimation.

References

1.
Bhaskar
,
K.
,
Kumar
,
A.
,
Bunce
,
J.
,
Pressman
,
J.
,
Burkell
,
N.
, and
Rahn
,
C. D.
,
2023
, “
Data-Driven Thermal Anomaly Detection in Large Battery Packs
,”
Batteries
,
9
(
2
), p.
70
.
2.
Schmid
,
M.
,
Liebhart
,
B.
,
Kleiner
,
J.
,
Endisch
,
C.
, and
Kennel
,
R.
,
2021
, “
Online Detection of Soft Internal Short Circuits in Lithium-Ion Battery Packs by Data-Driven Cell Voltage Monitoring
.”
2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia)
,
Singapore
,
May 24–27
, pp.
1711
1718
.
3.
Zheng
,
Y.
,
Han
,
X.
,
Lu
,
L.
,
Li
,
J.
, and
Ouyang
,
M.
,
2013
, “
Lithium Ion Battery Pack Power Fade Fault Identification Based on Shannon Entropy in Electric Vehicles
,”
J. Power Sources
,
223
, pp.
136
146
.
4.
Naha
,
A.
,
Khandelwal
,
A.
,
Agarwal
,
S.
,
Tagade
,
P.
,
Hariharan
,
K. S.
,
Kaushik
,
A.
,
Yadu
,
A.
,
Kolake
,
S. M.
,
Han
,
S.
, and
Oh
,
B.
,
2020
, “
Internal Short Circuit Detection in Li-Ion Batteries Using Supervised Machine Learning
,”
Sci. Rep.
,
10
(
1
), p.
1301
.
5.
Feng
,
X.
,
Weng
,
C.
,
Ouyang
,
M.
, and
Sun
,
J.
,
2016
, “
Online Internal Short Circuit Detection for a Large Format Lithium Ion Battery
,”
Appl. Energy
,
161
, pp.
168
180
.
6.
Yang
,
R.
,
Xiong
,
R.
, and
Shen
,
W.
,
2020
, “
On-Board Diagnosis of Soft Short Circuit Fault in Lithium-Ion Battery Packs for Electric Vehicles Using an Extended Kalman Filter
,”
CSEE J. Power Energy Syst.
,
8
(
1
), pp.
258
270
.
7.
Hu
,
J.
,
He
,
H.
,
Wei
,
Z.
, and
Li
,
Y.
,
2021
, “
Disturbance-Immune and Aging-Robust Internal Short Circuit Diagnostic for Lithium-Ion Battery
,”
IEEE Trans. Ind. Electron.
,
69
(
2
), pp.
1988
1999
.
8.
Xu
,
Y.
,
Ge
,
X.
,
Shen
,
W.
, and
Yang
,
R..
,
2022
, “
A Soft Short-Circuit Diagnosis Method for Lithium-Ion Battery Packs in Electric Vehicles
,”
IEEE Trans. Power Electron.
,
37
(
7
), pp.
8572
8581
.
9.
Yang
,
Q.
,
Sun
,
J.
,
Kang
,
Y.
,
Ma
,
H.
, and
Duan
,
D.
,
2023
, “
Internal Short Circuit Detection and Evaluation in Battery Packs Based on Transformation Matrix and an Improved State-Space Model
,”
Energy
,
276
, p.
127555
.
10.
Rawlings
,
J. B.
, and
Ji
,
L.
,
2012
, “
Optimization-Based State Estimation: Current Status and Some New Results
,”
J. Process Control
,
22
(
8
), pp.
1439
1444
.
11.
Shen
,
J.-N.
,
He
,
Y.-J.
,
Ma
,
Z.-F.
,
Luo
,
H.-B.
, and
Zhang
,
Z.-F.
,
2016
, “
Online State of Charge Estimation of Lithium-Ion Batteries: A Moving Horizon Estimation Approach
,”
Chem. Eng. Sci.
,
154
, pp.
42
53
.
12.
Rao
,
C. V
,
Rawlings
,
J. B
, and
Lee
,
J. H.
,
2001
, “
Constrained Linear State Estimation–A Moving Horizon Approach
,”
Automatica
,
37
(
10
), pp.
1619
1628
.
13.
Haseltine
,
E. L.
, and
Rawlings
,
J. B.
,
2005
, “
Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation
,”
Ind. Eng. Chem. Res.
,
44
(
8
), pp.
2451
2460
.
14.
Zhang
,
Z.
,
Xue
,
B.
, and
Fan
,
J.
,
2020
, “
Noise Adaptive Moving Horizon Estimation for State-of-Charge Estimation of Li-Ion Battery
,”
IEEE Access
,
9
, pp.
5250
5259
.
15.
Wan
,
Y.
,
Du
,
S.
,
Yan
,
J.
, and
Wang
,
Z.
,
2024
, “
Towards Fast Embedded Moving Horizon State-of-Charge Estimation for Lithium-Ion Batteries
,”
J. Energy Storage
,
78
, p.
110024
.
16.
Johansen
,
T. A.
,
2011
, Chapter 1: Introduction to Nonlinear Model Predictive Control and Moving Horizon Estimation.
17.
Rao
,
C. V.
,
Rawlings
,
J. B.
, and
Mayne
,
D. Q.
,
2003
, “
Constrained State Estimation for Nonlinear Discrete-Time Systems: Stability and Moving Horizon Approximations
,”
IEEE Trans. Automat. Contr.
,
48
(
2
), pp.
246
258
.
18.
Arora
,
S.
, and
Kapoor
,
A.
,
2019
, “
Experimental Study of Heat Generation Rate During Discharge of Lifepo4 Pouch Cells of Different Nominal Capacities and Thickness
,”
Batteries
,
5
(
4
), p.
70
.
You do not currently have access to this content.