Abstract

This study compares the trajectory tracking performance of two- and four-wheel steering systems, especially under normal driving conditions. Specifically, the lateral motion is controlled by an event-triggered model predictive control (MPC), which activates either when consecutive control steps surpass the predictive horizon or when tracking error exceeds a predetermined lateral offset. Using a modified 1/10th scale Tamiya TT-02 RC car as a test platform, the tracking performance of both two- and four-wheel systems are evaluated. Results from the experiments highlight the better tracking performance of the four-wheel steering system over the traditional two-wheel systems and demonstrate the benefit of using event-triggered MPC for lateral motion control even under normal driving conditions, contrary to common belief that four-wheel steering systems are beneficial only in tight steering maneuvers.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Fagnant
,
D. J.
, and
Kockelman
,
K.
,
2015
, “
Preparing a Nation for Autonomous Vehicles: Opportunities, Barriers and Policy Recommendations
,”
Transp. Res. Part A: Policy Practice
,
77
, pp.
167
181
.
2.
Chen
,
L.
,
Li
,
Y.
,
Huang
,
C.
,
Xing
,
Y.
,
Tian
,
D.
,
Li
,
L.
,
Hu
,
Z.
,
Teng
,
S.
,
Lv
,
C.
,
Wang
,
J.
, and
Cao
,
D.
,
2023
, “
Milestones in Autonomous Driving and Intelligent Vehicles—Part 1: Control, Computing System Design, Communication, Hd Map, Testing, and Human Behaviors
,”
IEEE. Trans. Syst. Man. Cybernet.: Syst.
,
53
(
9
), pp.
5831
5847
.
3.
Yu
,
R.
,
Guo
,
H.
,
Sun
,
Z.
, and
Chen
,
H.
,
2015
, “
MPC-Based Regional Path Tracking Controller Design for Autonomous Ground Vehicles
,” IEEE International Conference on Systems, Man, and Cybernetics, Oct. 9–12, Hong Kong, China, pp.
2510
2515
.
4.
Yang
,
L.
,
Lu
,
C.
,
Xiong
,
G.
,
Xing
,
Y.
, and
Gong
,
J.
,
2022
, “
A Hybrid Motion Planning Framework for Autonomous Driving in Mixed Traffic Flow
,”
Green Energy Int. Transp.
,
1
(
3
), p.
100022
.
5.
Zhou
,
Z.
,
Rother
,
C.
, and
Chen
,
J.
,
2023
, “
Event-Triggered Model Predictive Control for Autonomous Vehicle Path Tracking: Validation Using CARLA Simulator
,”
IEEE Trans. Int. Veh.
,
8
(
6
), pp.
3547
3555
.
6.
Hang
,
P.
,
Xia
,
X.
, and
Chen
,
X.
,
2021
, “
Handling Stability Advancement With 4WS and DYC Coordinated Control: A Gain-Scheduled Robust Control Approach
,”
IEEE Trans. Veh. Tech.
,
70
(
4
), pp.
3164
3174
.
7.
Zhao
,
W.
,
Qin
,
X.
, and
Wang
,
C.
,
2018
, “
Yaw and Lateral Stability Control for Four-Wheel Steer-by-Wire System
,”
IEEE/ASME Trans. Mechatron.
,
23
(
6
), pp.
2628
2637
.
8.
Hang
,
P.
, and
Chen
,
X.
,
2021
, “
Path Tracking Control of 4-Wheel-Steering Autonomous Ground Vehicles Based on Linear Parameter-Varying System With Experimental Verification
,”
Proc. Inst. Mech. Eng., Part I: J. Sys. Contr. Eng.
,
235
(
3
), pp.
411
423
.
9.
Zhu
,
S.
,
Wei
,
B.
,
Liu
,
D.
,
Chen
,
H.
,
Huang
,
X.
,
Zheng
,
Y.
, and
Wei
,
W.
,
2022
, “
A Dynamics Coordinated Control System for 4WD-4WS Electric Vehicles
,”
Electronics
,
11
(
22
), p.
3731
.
10.
Skarpetis
,
M. G.
,
Koumboulis
,
F. N.
,
Barmpokas
,
F. S.
, and
Chamilothoris
,
G. E.
,
2006
, “
Decoupling Control Algorithms for 4WS Vehicles
,”
IEEE International Conference on Mechatronics
,
Budapest, Hungary
,
July 3–5
, pp.
499
504
.
11.
Lv
,
H.-M.
,
Chen
,
N.
, and
Li
,
P.
,
2004
, “
Multi-Objective H Optimal Control for Four-Wheel Steering Vehicle Based on Yaw Rate Tracking
,”
Proc. Inst. Mech. Eng., D: J Auto. Eng.
,
218
(
10
), pp.
1117
1123
.
12.
Rawlings
,
J. B.
,
2000
, “
Tutorial Overview of Model Predictive Control
,”
IEEE Control Syst. Mag.
,
20
(
3
), pp.
38
52
.
13.
Chen
,
J.
,
Liang
,
M.
, and
Ma
,
X.
,
2021
, “
Probabilistic Analysis of Electric Vehicle Energy Consumption Using MPC Speed Control and Nonlinear Battery Model
,”
IEEE Green Tech Conference
,
Denver, CO
,
Apr. 7–9
, pp
181
186
.
14.
Yoo
,
J.
, and
Johansson
,
K. H.
,
2021
, “
Event-Triggered Model Predictive Control With a Statistical Learning
,”
IEEE. Trans. Syst. Man. Cybernet.: Syst.
,
51
(
4
), pp.
2571
2581
.
15.
Bao
,
H.
,
Kang
,
Q.
,
Shi
,
X.
,
Zhou
,
M.
,
Li
,
H.
,
An
,
J.
, and
Sedraoui
,
K.
,
2023
, “
Moment-Based Model Predictive Control of Autonomous Systems
,”
IEEE Trans. Intell. Vehicles
,
8
(
4
), pp.
2939
2953
.
16.
Chu
,
X.
,
Liu
,
Z.
,
Mao
,
L.
,
Jin
,
X.
,
Peng
,
Z.
, and
Wen
,
G.
,
2022
, “
Robust Event Triggered Control for Lateral Dynamics of Intelligent Vehicle With Designable Inter-Event Times
,”
IEEE Trans. Circuits Syst. II: Exp. Briefs
,
69
(
11
), pp.
4349
4353
.
17.
Chen
,
J.
,
Meng
,
X.
, and
Li
,
Z.
,
2022
, “
Reinforcement Learning-Based Event-Triggered Model Predictive Control for Autonomous Vehicle Path Following
,”
American Control Conference
,
Atlanta, GA
,
June 8–10
, pp
3342
3347
.
18.
Li
,
H.
, and
Shi
,
Y.
,
2014
, “
Event-Triggered Robust Model Predictive Control of Continuous-Time Nonlinear Systems
,”
Automatica
,
50
(
5
), pp.
1507
1513
.
19.
Yu
,
L.
,
Xia
,
Y.
, and
Sun
,
Z.
,
2018
, “
Robust Event–triggered Model Predictive Control for Constrained Linear Continuous System
,”
J. Robust. Nonlinear. Control.
,
29
(
5
), pp.
1216
1229
.
20.
Zhou
,
Z.
,
Chen
,
J.
,
Tao
,
M.
,
Zhang
,
P.
, and
Xu
,
M.
,
2023
, “
Experimental Validation of Event-Triggered Model Predictive Control for Autonomous Vehicle Path Tracking
,”
2023 IEEE International Conference on Electro Information Technology
,
Romeoville, IL
,
May 18–20
, pp.
35
40
.
21.
Rother
,
C.
,
Zhou
,
Z.
, and
Chen
,
J.
,
2023
, “
Development of a Four-Wheel Steering Scale Vehicle for Research and Education on Autonomous Vehicle Motion Control
,”
IEEE RA-L
,
8
(
8
), pp.
5015
5022
.
22.
Jetracer
,
2019
, “
An Autonomous AI Racecar Using NVIDIA Jetson Nano
,” https://github.com/NVIDIA-AI-IOT/jetracer, Accessed November 2021.
23.
Wang
,
J.
,
Gao
,
S.
,
Wang
,
K.
,
Wang
,
Y.
, and
Wang
,
Q.
,
2021
, “
Wheel Torque Distribution Optimization of Four-Wheel Independent-Drive Electric Vehicle for Energy Efficient Driving
,”
Control. Eng. Pract.
,
110
, p.
104779
.
24.
Goodarzi
,
A.
, and
Mohammadi
,
M.
,
2014
, “
Stability Enhancement and Fuel Economy of the 4-Wheel-Drive Hybrid Electric Vehicles by Optimal Tyre Force Distribution
,”
Vehicle Syst. Dyn.
,
52
(
4
), pp.
539
561
.
25.
Rawlings
,
J.
, “
Model Predictive Control (MPC) Tools Package
,” https://sites.engineering.ucsb.edu/ jbraw/software.html, Accessed March 2022.
26.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi—A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Programm. Comput.
,
11
(
1
), pp.
1
36
.
27.
Chen
,
J.
, and
Yi
,
Z.
,
2021
, “
Comparison of Event-Triggered Model Predictive Control for Autonomous Vehicle Path Tracking
,”
IEEE Conference on Control Technology and Applications
,
San Diego, CA
,
Aug. 8–11
, pp.
808
813
.
28.
Isen
,
F. W.
,
2009
, “
DSP for MATLAB and Labview I: Fundamentals of Discrete Signal Processing
,”
Synthesis Lectures on Signal Processing
,
J.
Moura
, ed.,
Springer Nature
,
Berlin, Germany
, pp.
169
188
.
29.
Viana
,
F. A. C.
,
2016
, “
A Tutorial on Latin Hypercube Design of Experiments
,”
Qual. Reliab. Eng. Int.
,
32
(
5
), pp.
1975
1985
.
You do not currently have access to this content.