Abstract

Omnidirectional locomotion provides wheeled mobile robots (WMR) with better maneuverability and flexibility, which enhances their energy efficiency and dexterity. Universal omni-wheels are one of the best categories of wheels that can be used to develop a WMR (Amarasiri et al., 2022, “Robust Dynamic Modeling and Trajectory Tracking Controller of a Universal Omni-Wheeled Mobile Robot,” ASME Letters Dyn. Sys. Control., 2(4), p. 040902. 10.1115/1.4055690). We study dynamic modeling and controllers for mobile robots to train in a reinforcement learning (RL)-based navigation algorithm. RL tasks require copious amounts of learning iteration episodes, which makes training very time consuming. The choice of dynamic model and controller has a significant impact on training time. In this paper, we compare a traditional Kane’s equations model to a non-holonomic canonical momenta model (Barhorst, 2019, “Generalized Momenta in Constrained Non-Holonomic Systems—Another Perspective on the Canonical Equations of Motion,” Int. J. Non-Linear Mech., 113, pp. 128–145.). We implemented four controllers: proportional integral derivative, linear quadratic regulator with integral action, pole placement, and a full nonlinear sliding mode controller. We summarize the pros and cons of each of the modeling techniques, and control laws implemented. The outcomes of our analysis will improve RL training time for path generation in unstructured environments.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Amarasiri
,
N.
,
Barhorst
,
A. A.
, and
Gottumukkala
,
R.
,
2022
, “
Robust Dynamic Modeling and Trajectory Tracking Controller of a Universal Omni-Wheeled Mobile Robot
,”
ASME Letters Dyn. Sys. Control.
,
2
(
4
), p.
040902
.
2.
Barhorst
,
A. A.
,
2019
, “
Generalized Momenta in Constrained Non-Holonomic Systems–Another Perspective on the Canonical Equations of Motion
,”
Int. J. Non-Linear Mech.
,
113
, pp.
128
145
.
3.
Parhi
,
D. R.
, and
Deepak
,
B. B. V. L.
,
2011
, “
Kinematic Model of Three Wheeled Mobile Robot
,”
J. Mech. Eng. Res.
,
3
(
9
), pp.
307
318
.
4.
Rubio
,
F.
,
Francisco
,
V.
, and
Carlos
,
L.-A.
,
2019
, “
A Review of Mobile Robots: Concepts, Methods, Theoretical Framework, and Applications
,”
Int. J. Adv. Rob. Syst.
,
16
(
2
), p.
1729881419839596
.
5.
Moosavian
,
S. A. A.
, and
Kalantari
,
A.
,
2008
, “
Experimental Slip Estimation for Exact Kinematics Modeling and Control of a Tracked Mobile Robot
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, pp. 95–100.
6.
Taheri
,
H.
,
Qiao
,
B.
, and
Ghaeminezhad
,
N.
,
2015
, “
Kinematic Model of a Four Mecanum Wheeled Mobile Robot
,”
Int. J. Comput. Appl.
,
113
(
3
), pp.
6
9
.
7.
Wang
,
C.
,
Liu
,
X.
,
Yang
,
X.
,
Hu
,
F.
,
Jiang
,
A.
, and
Yang
,
C.
,
2018
, “
Trajectory Tracking of an Omni-Directional Wheeled Mobile Robot Using a Model Predictive Control Strategy
,”
Appl. Sci.
,
8
(
2
), p.
231
.
8.
Wang
,
D.
,
Wei
,
W.
,
Yeboah
,
Y.
,
Li
,
Y.
, and
Gao
,
Y.
,
2020
, “
A Robust Model Predictive Control Strategy for Trajectory Tracking of Omni-Directional Mobile Robots
,”
J. Intell. Rob. Syst.
,
98
, pp.
439
453
.
9.
Pham
,
T. T.
,
Le
,
M. T.
, and
Nguyen
,
C. N.
,
2021
, “
Omnidirectional Mobile Robot Trajectory Tracking Control With Diversity of Inputs
,”
Int. J. Mech. Eng. Rob. Res.
,
10
(
11
), pp.
639
644
.
10.
Kurniawan
,
G. W.
,
Setyawan
,
N.
, and
Hakim
,
E. A.
,
2019
, “
PID Trajectory Tracking Control 4 Omni-Wheel Robot
,”
SinarFe7
,
2
(
1
), pp.
345
350
.
11.
Rijalusalam
,
D. U.
, and
Iswanto
,
I.
,
2021
, “
Implementation Kinematics Modeling and Odometry of Four Omni Wheel Mobile Robot on the Trajectory Planning and Motion Control Based Microcontroller
,”
J. Rob. Control
,
2
(
5
), pp.
448
455
.
12.
Thi
,
K. D. H.
,
Nguyen
,
M. C.
,
Vo
,
H. T.
,
Nguyen
,
D. D.
, and
Bui
,
A. D.
,
2019
, “
Trajectory Tracking Control for Four-Wheeled Omnidirectional Mobile Robot Using Backstepping Technique Aggregated With Sliding Mode Control
,”
2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP
),
Bangkok, Thailand
, pp.
131
134
. http://dx.doi.org.10.1109/ICASYMP.2019.8646041
13.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1983
, “
The Use of Kane’s Dynamical Equations in Robotics
,”
Int. J. Rob. Res.
,
2
(
3
), pp.
3
21
.
14.
Johannink
,
T.
,
Bahl
,
S.
,
Nair
,
A.
,
Luo
,
J.
,
Kumar
,
A.
,
Loskyll
,
M.
,
Ojea
,
J. A.
,
Solowjow
,
E.
, and
Levine
,
S.
,
2019
, “
Residual Reinforcement Learning for Robot Control
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
, pp.
6023
6029
.
15.
Eaglin
,
G.
, and
Vaughan
,
J.
,
2020
, “
Leveraging Conventional Control to Improve Performance of Systems Using Reinforcement Learning
,”
Proceedingsof the ASME 2020 Dynamic Systems and Control Conference
, Volume 2,
Virtual, Online
,
Oct. 5–7
, ASME, p.
V002T38A007
.
16.
Sombolestan
,
S. M.
,
Rasooli
,
A.
, and
Khodaygan
,
S.
,
2019
, “
Optimal Path-Planning for Mobile Robots to Find a Hidden Target in an Unknown Environment Based on Machine Learning
,”
J. Ambient Intell. Human. Comput.
,
10
, pp.
1841
1850
.
17.
Hoang
,
N. B.
, and
Kang
,
H. J.
,
2016
, “
Neural Network-Based Adaptive Tracking Control of Mobile Robots in the Presence of Wheel Slip and External Disturbance Force
,”
Neurocomputing
,
188
, pp.
12
22
.
18.
Åström
,
K. J.
, and
Murray
,
R. M.
,
2021
,
Feedback Systems: An Introduction for Scientists and Engineers
,
Princeton University Press
,
Princeton, NJ
, pp.
183
197
.
19.
Wolfram Research Inc.
,
2021
, Mathematica, Version 12.3.1.0, Champaign, IL.
20.
Barhorst
,
A. A.
,
1997
, “
Symbolic Equation Processing Utilizing Vector/Dyad Notation
,”
J. Sound Vib.
,
208
(
5
), pp.
823
839
.
21.
Liu
,
J.
,
Wang
,
X.
,
Liu
,
J.
, and
Wang
,
X.
,
2011
,
Advanced Sliding Mode Control
.
Tsinghua University Press
,
Beijing, China
, pp.
81
96
.
22.
Components and Data Structures-Wolfram Language Documentation. https://reference.wolfram.com/language/tutorial/NDSolveStateData.html#1805463009, Accessed March 5, 2023.
23.
You do not currently have access to this content.