Abstract

The integration of robots into environments shared by humans has been enhanced through the use of redundant robots capable of executing primary tasks and secondary objectives such as obstacle avoidance and null-space impedance control. A critical secondary objective involves optimizing manipulator configurations to reduce torque and prevent torque saturation, similar to how athletes distribute loads to minimize the risk of injury. This paper suggests employing robotic redundancy to evenly distribute joint loads, thereby improving performance and avoiding torque saturation. Prior studies primarily focused on either endpoint stiffness control or kinetic energy minimization, each having its drawbacks. This paper introduces a novel objective function that responds to all external disturbances at the end-effector, aiming to lower joint torques via redundancy for precise trajectory tracking amidst disturbances. This method, which provides an inverse kinematics solution adaptable to various controllers, demonstrated a 29.85% reduction in peak torque and a 14.69% decrease in cumulative torques in the KUKA LBR iiwa 14 R820 robot.

References

1.
Brohan
,
A.
,
Brown
,
N.
,
Carbajal
,
J.
,
Chebotar
,
Y.
,
Chen
,
X.
,
Choromanski
,
K.
,
Ding
,
T.
, et al
,
2023
, “
Rt-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control
,” arXiv preprint arXiv:2307.15818. https://arxiv.org/abs/2307.15818
2.
Siciliano
,
B.
,
Khatib
,
O.
, and
Kröger
,
T.
,
2008
,
Springer Handbook of Robotics
, Vol.
200
,
Springer
,
London
.
3.
Potkonjak
,
V.
,
Popovic
,
M.
,
Lazarevic
,
M.
, and
Sinanovic
,
J.
,
1998
, “
Redundancy Problem in Writing: From Human to Anthropomorphic Robot Arm
,”
IEEE Trans. Syst., Man, Cybernetics, Part B (Cybernetics)
,
28
(
6
), pp.
790
805
.
4.
Xia
,
Y. S.
,
Feng
,
G.
, and
Wang
,
J.
,
2005
, “
A Primal-Dual Neural Network for Online Resolving Constrained Kinematic Redundancy in Robot Motion Control
,”
IEEE Trans. Syst., Man, Cybernetics, Part B (Cybernetics)
,
35
(
1
), pp.
54
64
.
5.
Tsuji
,
T.
,
Nakayama
,
S.
, and
Ito
,
K.
,
1997
, “
Parallel and Distributed Trajectory Generation of Redundant Manipulators Through Cooperation and Competition Among Subsystems
,”
IEEE Trans. Syst., Man, Cybernetics, Part B (Cybernetics)
,
27
(
3
), pp.
498
509
.
6.
Zhang
,
Y.
,
Ge
,
S. S.
, and
Lee
,
T. H.
,
2004
, “
A Unified Quadratic-Programming-Based Dynamical System Approach to Joint Torque Optimization of Physically Constrained Redundant Manipulators
,”
IEEE Trans. Syst., Man, Cybernetics, Part B (Cybernetics)
,
34
(
5
), pp.
2126
2132
.
7.
Khan
,
A. H.
,
Li
,
S.
, and
Luo
,
X.
,
2020
, “
Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN-Based Metaheuristic Approach
,”
IEEE Trans. Ind. Inf.
,
16
(
7
), pp.
4670
4680
.
8.
Sadeghian
,
H.
,
Keshmiri
,
M.
,
Villani
,
L.
, and
Siciliano
,
B.
,
2012
, “
Null-Space Impedance Control With Disturbance Observer
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Algarve, Portugal
,
Oct. 7–12
, pp.
2795
2800
.
9.
Zatsiorsky
,
V. M.
, and
Prilutsky
,
B. I.
,
2012
,
Biomechanics of Skeletal Muscles
,
Human Kinetics
,
Champaign, IL
.
10.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
11.
Ajoudani
,
A.
,
Tsagarakis
,
N. G.
, and
Bicchi
,
A.
,
2017
, “
Choosing Poses for Force and Stiffness Control
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1483
1490
.
12.
Ajoudani
,
A.
,
Tsagarakis
,
N. G.
, and
Bicchi
,
A.
,
2015
, “
On the Role of Robot Configuration in Cartesian Stiffness Control
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 25–30
, IEEE, pp.
1010
1016
.
13.
Jadav
,
S.
, and
Palanthandalam-Madapusi
,
H. J.
,
2023
, “
Configuration and Force-Field Aware Variable Impedance Control With Faster Relearning
,”
J. Intell. Rob. Syst.
,
110
(
3
), p.
3
.
14.
Jadav
,
S.
,
Riswadkar
,
S.
,
Kadam
,
S. D.
, and
Palanthandalam-Madapusi
,
H. J.
,
2023
, “
Variable Impedance Learning Control With Faster Re-Learning and Reduced Initial Errors in Re-Perturbation for Robots Operating in Divergent Force Fields
,”
Proceedings of the 2023 6th International Conference on Advances in Robotics
,
Ropar, India
,
July 5–8
.
15.
Hollerbach
,
J.
, and
Suh
,
K.
,
1985
, “
Redundancy Resolution of Manipulators Through Torque Optimization
,”
Proceedings of the 1985 IEEE International Conference on Robotics and Automation
,
St. Louis, MO
,
Mar. 25–28
, Vol. 2, pp. 1016–1021, ACM.
16.
Nedungadi
,
A.
, and
Kazerouinian
,
K.
,
1989
, “
A Local Solution With Global Characteristics for the Joint Torque Optimization of a Redundant Manipulator
,”
J. Robot. Syst.
,
6
(
5
), pp.
631
654
.
17.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Robot. Syst.
,
3
, pp.
201
212
.
18.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
, Vol.
199
,
Prentice Hall
,
Englewood Cliffs, NJ
.
19.
Cao
,
S.
,
Sun
,
L.
,
Jiang
,
J.
, and
Zuo
,
Z.
,
2021
, “
Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation
,”
IEEE Trans. Neural Netw. Learning Syst.
,
34
(
8
), pp.
4584
4595
.
20.
Golub
,
G. H.
,
Hansen
,
P. C.
, and
O’Leary
,
D. P.
,
1999
, “
Tikhonov Regularization and Total Least Squares
,”
SIAM J. Matrix Anal. Appl.
,
21
(
1
), pp.
185
194
.
21.
Hennersperger
,
C.
,
Fuerst
,
B.
,
Virga
,
S.
,
Zettinig
,
O.
,
Frisch
,
B.
,
Neff
,
T.
, and
Navab
,
N.
,
2017
, “
Towards MRI-Based Autonomous Robotic Us Acquisitions: A First Feasibility Study
,”
IEEE Trans. Med. Imaging
,
36
(
2
), pp.
538
548
.
You do not currently have access to this content.