Abstract

This paper introduces an adaptive control design tailored for robotic systems described by Euler–Lagrange equations under actuator saturation and partial loss of effectiveness. The adaptive law put forth not only retains conventional control properties but also extends its scope to effectively address challenges posed by actuator saturation and partial loss of effectiveness. The framework’s primary focus is on bolstering system robustness, thereby ensuring the achievement of uniformly ultimate bounded tracking errors. The stability and convergence of the system’s behavior are rigorously established through the application of the Lyapunov analysis technique. Moreover, the effectiveness and superiority of the introduced framework are compellingly demonstrated through a series of practical simulations and experimental instances.

References

1.
Kothare
,
M. V.
,
Campo
,
P. J.
,
Morari
,
M.
, and
Nett
,
C. N.
,
1994
, “
A Unified Framework for the Study of Anti-Windup Designs
,”
Automatica
,
30
(
12
), pp.
1869
1883
.
2.
Ameli
,
S.
, and
Moses Anubi
,
O.
,
2022
, “
Hierarchical Robust Adaptive Control for Wind Turbines With Actuator Fault
,”
ASME Lett. Dyn. Sys. Control
,
2
(
3
), p.
031001
.
3.
Abbaspour
,
A.
,
Mokhtari
,
S.
,
Sargolzaei
,
A.
, and
Yen
,
K. K.
,
2020
, “
A Survey on Active Fault-Tolerant Control Systems
,”
Electronics
,
9
(
9
), p.
1513
.
4.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1987
, “
On the Adaptive Control of Robot Manipulators
,”
Int. J. Rob. Res.
,
6
(
3
), pp.
49
59
.
5.
Zhou
,
X.
,
Wang
,
Z.
,
Shen
,
H.
, and
Wang
,
J.
,
2022
, “
Systematic Synthesis of a Class of Smooth Parameter Projection Operators for Stable Adaptive Systems
,”
ASME Lett. Dyn. Syst. Control
,
2
(
3
), p.
031009
.
6.
Huang
,
B.
,
Zhang
,
S.
,
He
,
Y.
,
Wang
,
B.
, and
Deng
,
Z.
,
2022
, “
Finite-Time Anti-Saturation Control for Euler–Lagrange Systems With Actuator Failures
,”
ISA Trans.
,
124
, pp.
468
477
.
7.
Wen
,
C.
,
Zhou
,
J.
,
Liu
,
Z.
, and
Su
,
H.
,
2011
, “
Robust Adaptive Control of Uncertain Nonlinear Systems in the Presence of Input Saturation and External Disturbance
,”
IEEE Trans. Automat. Contr.
,
56
(
7
), pp.
1672
1678
.
8.
Wang
,
L.
,
Sun
,
W.
, and
Su
,
S.-F.
,
2022
, “
Adaptive Asymptotic Tracking Control for Nonlinear Systems With State Constraints and Input Saturation
,”
Appl. Math. Comput.
,
431
, p.
127342
.
9.
Gao
,
W.
, and
Selmic
,
R.
,
2006
, “
Neural Network Control of a Class of Nonlinear Systems With Actuator Saturation
,”
IEEE Trans. Neural Netw.
,
17
(
1
), pp.
147
156
.
10.
Cao
,
L.
,
Zhang
,
J.
,
Liu
,
S.
, and
Zhao
,
Z.
,
2023
, “
Adaptive Neural Fault-Tolerant Control of an Uncertain 2-DOF Helicopter System With Actuator Faults and Output Error Constrains
,”
IET Control Theory Appl.
,
17
(
13
), pp.
1768
1778
.
11.
He
,
W.
,
Dong
,
Y.
, and
Sun
,
C.
,
2016
, “
Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation
,”
IEEE Trans. Syst. Man. Cybernet.: Syst.
,
46
(
3
), pp.
334
344
.
12.
Sun
,
Y.
,
Dong
,
D.
,
Qin
,
H.
, and
Wang
,
W.
,
2020
, “
Distributed Tracking Control for Multiple Euler–Lagrange Systems With Communication Delays and Input Saturation
,”
ISA Trans.
,
96
, pp.
245
254
.
13.
Khalili
,
M.
,
Zhang
,
X.
,
Polycarpou
,
M. M.
,
Parisini
,
T.
, and
Cao
,
Y.
,
2018
, “
Distributed Adaptive Fault-Tolerant Control of Uncertain Multi-Agent Systems
,”
Automatica
,
87
(
21
), pp.
142
151
.
14.
Falcón
,
R.
,
Ríos
,
H.
, and
Dzul
,
A.
,
2022
, “
A Robust Fault Diagnosis for Quad-Rotors: A Sliding-Mode Observer Approach
,”
IEEE/ASME Trans. Mechatronics
,
27
(
6
), pp.
4487
4496
.
15.
Ngo
,
V.-T.
, and
Liu
,
Y.-C.
,
2020
, “
Distributed Task-Space Consensus Control of Networked Euler-Lagrange Systems Under Faulty Actuator and Switching Communication Topology
,”
2020 59th IEEE Conference on Decision and Control (CDC)
,
Jeju, South Korea
,
Dec. 14–18
, pp.
5224
5229
.
16.
Galeani
,
S.
,
Tarbouriech
,
S.
,
Turner
,
M.
, and
Zaccarian
,
L.
,
2009
, “
A Tutorial on Modern Anti-Windup Design
,”
2009 European Control Conference (ECC)
,
Budapest, Hungary
,
Aug. 23–26
, pp.
306
323
.
17.
Falcón
,
R.
,
Ríos
,
H.
, and
Dzul
,
A.
,
2022
, “
A Sliding-Mode-Based Active Fault-Tolerant Control for Robust Trajectory Tracking in Quad-Rotors Under a Rotor Failure
,”
J. Robust Nonlinear Control
,
32
(
15
), pp.
8451
8469
.
18.
Yin
,
Y.
,
Wang
,
F.
,
Liu
,
Z.
, and
Chen
,
Z.
,
2022
, “
Finite-Time Leader-Following Consensus of Multiagent Systems With Actuator Faults and Input Saturation
,”
IEEE Trans. Syst. Man. Cybernet.: Syst.
,
52
(
5
), pp.
3314
3325
.
19.
Ameli
,
S.
, and
Moses Anubi
,
O.
,
2022
, “
Hierarchical Robust Adaptive Control for Wind Turbines With Actuator Fault
,”
ASME Lett. Dyn. Syst. Control
,
2
(
3
), p.
031001
.
20.
Morabito
,
F.
,
Teel
,
A.
, and
Zaccarian
,
L.
,
2004
, “
Nonlinear Antiwindup Applied to Euler-Lagrange Systems
,”
IEEE Trans. Rob. Autom.
,
20
(
3
), pp.
526
537
.
21.
Dong
,
Y.
, and
Huang
,
J.
,
2018
, “
Consensus and Flocking With Connectivity Preservation of Uncertain Euler–Lagrange Multi-agent Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
9
), p.
091011
.
22.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
John Wiley & Sons, Inc.
,
New York
.
23.
Liu
,
Y.
, and
Chopra
,
N.
,
2012
, “
Controlled Synchronization of Heterogeneous Robotic Manipulators in the Task Space
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
268
275
.
24.
Saboori
,
I.
, and
Khorasani
,
K.
,
2015
, “
Actuator Fault Accommodation Strategy for a Team of Multi-agent Systems Subject to Switching Topology
,”
Automatica
,
62
, pp.
200
207
.
25.
Peng
,
G.
,
Yang
,
C.
,
He
,
W.
, and
Chen
,
C. L. P.
,
2020
, “
Force Sensorless Admittance Control With Neural Learning for Robots With Actuator Saturation
,”
IEEE. Trans. Ind. Electron.
,
67
(
4
), pp.
3138
3148
.
26.
Liu
,
Y.-C.
, and
Chopra
,
N.
,
2013
, “
Synchronization of Networked Mechanical Systems With Communication Delays and Human Input
,”
ASME J. Dyn. Syst. Meas. Control.
,
135
(
4
), p.
041004
.
You do not currently have access to this content.