Abstract

A locomotion compensator is normally utilized to observe the behavior of walking insects. These compensators cancel out the movement of freely walking insects to facilitate long-term imaging for studying behavior. However, controlling the locomotion compensator with a small error (≤ 1 mm) has been challenging due to the random motion of walking insects. This study introduces an adaptive model predictive control (MPC) approach combined with trajectory prediction to effectively control the transparent omnidirectional locomotion compensator (TOLC) for a randomly walking fire ant. The proposed MPC with prediction (MPCwP) utilizes the average velocity from the previous gaiting cycle to estimate its future trajectory. Experimental results demonstrate that MPCwP significantly outperforms MPC without prediction (MPCwoP), which relies solely on the current position and orientation. The distance error of the MPCwP method remains below 0.6 mm for 90.3% and 1.0 mm for 99.2% of the time, whereas MPCwoP achieves this only 32.6% and 69.1% of the time, respectively. Furthermore, the proposed method enhances the tracking performance of the heading angle, with the heading angle error staying below 8 deg for 92.6% of the time (wθ=1.0). The enhanced performance of the proposed MPC has the potential to improve the observation images and enable the integration of additional equipment such as an optical microscope for brain or organ imaging.

References

1.
Guo
,
X.
,
Lin
,
M. R.
,
Azizi
,
A.
,
Saldyt
,
L. P.
,
Kang
,
Y.
,
Pavlic
,
T. P.
, and
Fewell
,
J. H.
,
2022
, “
Decoding Alarm Signal Propagation of Seed-Harvester Ants Using Automated Movement Tracking and Supervised Machine Learning
,”
Proc. R. Soc. B
,
289
(
1967
), p.
20212176
.
2.
Veeraraghavan
,
A.
,
Chellappa
,
R.
, and
Srinivasan
,
M.
,
2008
, “
Shape-and-Behavior Encoded Tracking of Bee Dances
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
30
(
3
), pp.
463
476
.
3.
Götz
,
K. G.
, and
Wenking
,
H.
,
1973
, “
Visual Control of Locomotion in the Walking Fruitfly Drosophila
,”
J. Comp. Physiol.
,
85
, pp.
235
266
.
4.
Arnold
,
S. E.
,
Stevenson
,
P. C.
, and
Belmain
,
S. R.
,
2016
, “
Shades of Yellow: Interactive Effects of Visual and Odour Cues in a Pest Beetle
,”
PeerJ
,
4
, p.
e2219
.
5.
Kramer
,
E.
,
1976
, “
The Orientation of Walking Honeybees in Odour Fields With Small Concentration Gradients
,”
Physiol. Entomol.
,
1
(
1
), pp.
27
37
.
6.
Weber
,
T.
,
Thorson
,
J.
, and
Huber
,
F.
,
1981
, “
Auditory Behavior of the Cricket
,”
J. Comp. Physiol.
,
141
, pp.
215
232
.
7.
Iwatani
,
Y.
,
Ogawa
,
H.
,
Shidara
,
H.
,
Sakura
,
M.
,
Sato
,
T.
,
Hojo
,
M. K.
,
Honma
,
A.
, and
Tsurui-Sato
,
K.
,
2019
, “
Markerless Visual Servo Control of a Servosphere for Behavior Observation of a Variety of Wandering Animals
,”
Adv. Robot.
,
33
(
3–4
), pp.
183
194
.
8.
Iwatani
,
Y.
,
2021
, “
High-Speed Servosphere
,”
IEEE/SICE International Symposium on System Integration (SII)
,
Iwaki, Fukushima, Japan
,
Jan. 11–14
, IEEE, pp.
613
618
.
9.
Shigaki
,
S.
,
Fukushima
,
S.
,
Kurabayashi
,
D.
,
Sakurai
,
T.
, and
Kanzaki
,
R.
,
2016
, “
A Novel Method for Full Locomotion Compensation of an Untethered Walking Insect
,”
Bioinspir. Biomim.
,
12
(
1
), p.
016005
.
10.
Otálora-Luna
,
F.
,
Dickens
,
J. C.
,
Brinkerhoff
,
J.
, and
Li
,
A. Y.
,
2022
, “
Behavior of Nymphs and Adults of the Black-Legged Tick Ixodes Scapularis and the Lone Star Tick Ambylomma Americanum in Response to Thermal Stimuli
,”
Insects
,
13
(
2
), p.
130
.
11.
Nagaya
,
N.
,
Mizumoto
,
N.
,
Abe
,
M. S.
,
Dobata
,
S.
,
Sato
,
R.
, and
Fujisawa
,
R.
,
2017
, “
Anomalous Diffusion on the Servosphere: A Potential Tool for Detecting Inherent Organismal Movement Patterns
,”
PLoS. One.
,
12
(
6
), p.
e0177480
.
12.
Goulard
,
R.
,
Buehlmann
,
C.
,
Niven
,
J. E.
,
Graham
,
P.
, and
Webb
,
B.
,
2020
, “
A Motion Compensation Treadmill for Untethered Wood Ants (Formica rufa): Evidence for Transfer of Orientation Memories From Free-Walking Training
,”
J. Exp. Biol.
,
223
(
24
), p.
jeb228601
.
13.
Pun
,
P.
,
Brown
,
J.
,
Cobb
,
T.
,
Wessells
,
R. J.
, and
Kim
,
D. H.
,
2021
, “
Navigation of a Freely Walking Fruit Fly in Infinite Space Using a Transparent Omnidirectional Locomotion Compensator (TOLC)
,”
Sensors
,
21
(
5
), p.
1651
.
14.
van Tilborg
,
M.
,
van der Pers
,
J. N.
,
Roessingh
,
P.
, and
Sabelis
,
M. W.
,
2003
, “
State-Dependent and Odor-Mediated Anemotactic Responses of a Micro-Arthropod on a Novel Type of Locomotion Compensator
,”
Beh. Res. Meth.,Instr. Comp.
,
35
, pp.
478
482
.
15.
Banks
,
W. A.
,
Lofgren
,
C.
,
Jouvenaz
,
D.
,
Stringer
,
C.
,
Bishop
,
P.
,
Williams
,
D.
,
Wojcik
,
D.
, and
Glancey
,
B.
,
1981
, “
Techniques for Collecting, Rearing, and Handling Imported Fire Ants
,”
U.S. Dep. Agric. Sci. Educ. Adm
,
21
, pp.
1
9
.
16.
Bhatkar
,
A.
, and
Whitcomb
,
W.
,
1970
, “
Artificial Diet for Rearing Various Species of Ants
,”
Florida Entomol.
,
53
(
4
), pp.
229
232
.
You do not currently have access to this content.