Abstract

Reliable process control for the laser powder bed fusion process, especially at the melt pool scale, remains an open challenge. One of the reasons for this is the lack of suitable control-oriented models and associated control design strategies. To address this issue, this paper (1) identifies an empirical control-oriented model of geometry-dependent melt pool behavior and (2) experimentally demonstrates melt pool regulation with a feedforward controller for laser power based on this model. First, the study establishes that the melt pool signature increases as the scan lines decrease in length. An empirical model of this behavior is developed and validated on different geometries at varying laser power levels. Second, the model is used to design a line-to-line feedforward controller that provides an optimal laser power sequence for a given geometry. Finally, this controller is validated experimentally and is demonstrated to suppress the in-layer geometry-related melt pool signal deviations for different test geometries.

References

1.
Zhang
,
B.
,
Li
,
Y.
, and
Bai
,
Q.
,
2017
, “
Defect Formation Mechanisms in Selective Laser Melting: A Review
,”
Chin. J. Mech. Eng.
,
30
(
3
), pp.
515
527
.
2.
Wang
,
D.
,
Yang
,
Y.
,
Yi
,
Z.
, and
Su
,
X.
,
2013
, “
Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1471
1484
.
3.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Procedia Cirp
,
45
, pp.
131
134
.
4.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals: Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.
5.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
,
Sept. 24–29
, Taylor & Francis Ltd, pp.
521
527
.
6.
Renken
,
V.
,
Freyberg
,
A. V.
,
Schünemann
,
K.
,
Pastors
,
F.
, and
Fischer
,
A.
,
2019
, “
In-Process Closed-Loop Control for Stabilising the Melt Pool Temperature in Selective Laser Melting
,”
Prog. Addit. Manuf.
,
4
(
4
), pp.
411
421
.
7.
Craeghs
,
T.
,
Clijsters
,
S.
,
Yasa
,
E.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2011
, “
Determination of Geometrical Factors in Layerwise Laser Melting Using Optical Process Monitoring
,”
Opt. Lasers Eng.
,
49
(
12
), pp.
1440
1446
.
8.
Vasileska
,
E.
,
Demir
,
A. G.
,
Colosimo
,
B. M.
, and
Previtali
,
B.
,
2020
, “
Layer-Wise Control of Selective Laser Melting by Means of Inline Melt Pool Area Measurements
,”
J. Laser Appl.
,
32
(
2
), p.
022057
.
9.
Shkoruta
,
A.
,
Mishra
,
S.
, and
Rock
,
S. J.
,
2021
, “
Real-Time Image-Based Feedback Control of Laser Powder Bed Fusion
,”
ASME Lett. Dyn. Syst. Control
,
2
(
2
), p.
021001
.
10.
Shkoruta
,
A.
,
Caynoski
,
W.
,
Mishra
,
S.
, and
Rock
,
S.
,
2019
, “
Iterative Learning Control for Power Profile Shaping in Selective Laser Melting
,”
IEEE International Conference on Automation Science and Engineering
,
Vancouver, BC, Canada
,
Aug. 22–26
, pp.
655
660
.
11.
Yeung
,
H.
,
Lane
,
B.
, and
Fox
,
J.
,
2019
, “
Part Geometry and Conduction-Based Laser Power Control for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
30
, p.
100844
.
12.
Yeung
,
H.
, and
Lane
,
B.
,
2020
, “
A Residual Heat Compensation Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Manuf. Lett.
,
25
, pp.
56
59
.
13.
Yeung
,
H.
,
Yang
,
Z.
, and
Yan
,
L.
,
2020
, “
A Meltpool Prediction Based Scan Strategy for Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
35
, p.
101383
.
14.
Ren
,
Y.
, and
Wang
,
Q.
,
2021
, “
Gaussian-Process Based Modeling and Optimal Control of Melt-Pool Geometry in Laser Powder Bed Fusion
,”
J. Intell. Manuf.
,
33
(
8
), pp.
2239
2256
.
15.
Wang
,
X.
,
Lough
,
C. S.
,
Bristow
,
D. A.
,
Landers
,
R. G.
, and
Kinzel
,
E. C.
,
2020
, “
A Layer-to-Layer Control-Oriented Model for Selective Laser Melting
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1–3
, IEEE, pp.
481
486
.
16.
Yang
,
Y.
,
Knol
,
M.
,
van Keulen
,
F.
, and
Ayas
,
C.
,
2018
, “
A Semi-Analytical Thermal Modelling Approach for Selective Laser Melting
,”
Addit. Manuf.
,
21
, pp.
284
297
.
17.
Wang
,
Q.
,
Michaleris
,
P. P.
,
Nassar
,
A. R.
,
Irwin
,
J. E.
,
Ren
,
Y.
, and
Stutzman
,
C. B.
,
2020
, “
Model-Based Feedforward Control of Laser Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
31
, p.
100985
.
18.
America Makes
, “
4039 Development & Demonstration of Open-Source Protocols for Powder Bed Fusion AM
.” https://www.americamakes.us/projects/4039-development-demonstration-open-source-protocols-powder-bed-fusion-additive-manufacturing-pbfam/, Accessed July 2, 2023.
19.
Grantham
,
S.
,
Lane
,
B.
,
Neira
,
J.
,
Mekhontsev
,
S.
,
Vlasea
,
M.
, and
Hanssen
,
L.
,
2016
, “
Optical Design and Initial Results From NIST’s AMMT/TEMPS Facility
,”
Laser 3D Manufacturing III
,
San Fransisco, CA
,
Feb. 13–18
, Vol. 9738, SPIE, pp.
91
99
.
20.
Gökhan Demir
,
A.
,
De Giorgi
,
C.
, and
Previtali
,
B.
,
2018
, “
Design and Implementation of a Multisensor Coaxial Monitoring System with Correction Strategies for Selective Laser Melting of a Maraging Steel
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041003
.
You do not currently have access to this content.