Abstract

Robotic exoskeletons for the hand are being explored to improve health, safety, and physical performance. However, much research effort is needed to establish reliable models of human behavior for effective human–robot interaction control. In this work, surface electromyography is used to measure and model muscle activity of healthy participants performing quasi-isometric and dynamic hand exercises. Non-negative matrix tri-factorization is used to extract hidden neuromuscular parameters encoded in spatial and temporal muscle synergies, which are used to estimate probabilistic linear models of intent, effort, and fatigue. This paper thereby presents steps toward reliable modeling of nonlinear time-varying hand neuromuscular dynamics for intuitive and robust human–robot interaction.

References

1.
Fasoli
,
S. E.
,
Krebs
,
H. I.
, and
Hogan
,
N.
,
2004
, “
Robotic Technology and Stroke Rehabilitation: Translating Research Into Practice
,”
Top. Stroke Rehab.
,
11
(
4
), pp.
11
19
.
2.
du Plessis
,
T.
,
Djouani
,
K.
, and
Oosthuizen
,
C.
,
2021
, “
A Review of Active Hand Exoskeletons for Rehabilitation and Assistance
,”
Robotics
,
10
(
1
), pp.
1
42
.
3.
Hamaya
,
M.
,
Matsubara
,
T.
,
Teramae
,
T.
,
Noda
,
T.
, and
Morimoto
,
J.
,
2021
, “
Design of Physical User–Robot Interactions for Model Identification of Soft Actuators on Exoskeleton Robots
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
397
410
.
4.
Zeng
,
J.
,
Zhou
,
Y.
,
Yang
,
Y.
,
Yan
,
J.
, and
Liu
,
H.
,
2021
, “
Fatigue-Sensitivity Comparison of sEMG and A-Mode Ultrasound Based Hand Gesture Recognition
,”
J-BHI
,
26
(
4
), pp.
1718
1725
.
5.
Madden
,
K. E.
,
Djurdjanovic
,
D.
, and
Deshpande
,
A. D.
,
2021
, “
Using a System-Based Monitoring Paradigm to Assess Fatigue During Submaximal Static Exercise of the Elbow Extensor Muscles
,”
Sensors
,
21
(
4
), p.
1024
.
6.
Lin
,
T.-C.
,
Krishnan
,
A. U.
, and
Li
,
Z.
,
2020
, “
Shared Autonomous Interface for Reducing Physical Effort in Robot Teleoperation Via Human Motion Mapping
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, IEEE, pp.
9157
9163
.
7.
Madden
,
K. E.
,
Deshpande
,
A.
,
Peters
,
B.
,
Rogers
,
J.
,
Laske
,
E.
, and
McBryan
,
E.
,
2017
, “
The Influence of Robotic Assistance on Reducing Neuromuscular Effort and Fatigue During Extravehicular Activity Glove Use
,”
The International Conference on Environmental Systems
,
Charleston, SC
,
July 16–20
.
8.
Britt
,
J. E.
,
O’Malley
,
M. K.
, and
Rose
,
C. G.
,
2021
, “
Electromyographic Classification to Control the SPAR Glove
,”
Model. Estimat. Contr. Conf.
,
54
(
20
), pp.
244
250
.
9.
D’Avella
,
A.
,
Saltiel
,
P.
, and
Bizzi
,
E.
,
2003
, “
Combinations of Muscle Synergies in the Construction of a Natural Motor Behavior
,”
Nat. Neurosci.
,
6
(
04
), pp.
300
308
.
10.
Brambilla
,
C.
,
Atzori
,
M.
,
Müller
,
H.
, and
Scano
,
A.
,
2023
, “
Spatial and Temporal Muscle Synergies Provide a Dual Characterization of Low-Dimensional and Intermittent Control of Upper-Limb Movements
,”
Neuroscience
,
514
, pp.
100
122
.
11.
Baskaran
,
A.
, and
Rose
,
C. G.
,
2022
, “
Assessment of Neuromuscular Fatigue From Muscle Synergies in Hand Poses
,”
Model. Estimat. Contr. Conf.
,
55
(
36
), pp.
382
387
.
12.
Rabbi
,
M. F.
,
Pizzolato
,
C.
,
Lloyd
,
D. G.
,
Carty
,
C. P.
,
Devaprakash
,
D.
, and
Diamond
,
L. E.
,
2020
, “
Non-Negative Matrix Factorisation is the Most Appropriate Method for Extraction of Muscle Synergies in Walking and Running
,”
Sci. Rep.
,
10
(
1
), pp.
1
11
.
13.
Maher
,
C.
,
Yoon
,
S.
,
Donovan
,
S.
, and
Mendonca
,
R. J.
,
2018
, “
Reliability of the Bulb Dynamometer for Assessing Grip Strength
,”
J. Occp. Ther.
,
6
(
04
), pp.
1
10
.
14.
Nimbarte
,
A. D.
,
Kaz
,
R.
, and
Li
,
Z. -M.
,
2008
, “
Finger Joint Motion Generated by Individual Extrinsic Muscles: A Cadaveric Study
,”
J. Ortho. Surg. Res.
,
3
(
1
).
15.
Takei
,
T.
,
Confais
,
J.
,
Tomatsu
,
S.
,
Oya
,
T.
, and
Seki
,
K.
,
2017
, “
Neural Basis for Hand Muscle Synergies in the Primate Spinal Cord
,”
Proc. Nat. Acad. Sci.
,
114
(
32
), pp.
8643
8648
.
16.
Delis
,
I.
,
Onken
,
A.
,
Schyns
,
P. G.
,
Panzeri
,
S.
, and
Philiastides
,
M. G.
,
2016
, “
Space-by-Time Decomposition for Single-Trial Decoding of M/EEG Activity
,”
Neuroimage
,
133
(
06
), pp.
504
515
.
17.
Swamy
,
R. B. N.
,
2015
, “
Sparse Topical Analysis of Dyadic Data Using Matrix Tri-Factorization
,”
Mach. Learn.
,
104
(
2–3
), pp.
441
466
.
18.
Hajiloo
,
B.
,
Anbarian
,
M.
,
Esmaeili
,
H.
, and
Mirzapour
,
M.
,
2020
, “
The Effects of Fatigue on Synergy of Selected Lower Limb Muscles During Running
,”
J. Biomech.
,
103
, p.
109692
.
19.
Li
,
G.
,
Shourijeh
,
M. S.
,
Ao
,
D.
,
Patten
,
C.
, and
Fregly
,
B. J.
,
2021
, “
How Well Do Commonly Used Co-Contraction Indices Approximate Lower Limb Joint Stiffness Trends During Gait for Individuals Post-Stroke?
Front. Bioeng. Biotech.
,
8
, p.
588908
.
20.
Hug
,
F.
,
Goupille
,
C.
,
Baum
,
D.
,
Raiteri
,
B. J.
,
Hodges
,
P. W.
, and
Tucker
,
K.
,
2015
, “
Nature of the Coupling Between Neural Drive and Force-Generating Capacity in the Human Quadriceps Muscle
,”
Proc. Bio. Sci
,
282
(
11
), p.
20151908
.
21.
Ding
,
C.
,
Li
,
T.
,
Peng
,
W.
, and
Park
,
H.
,
2006
, “
Orthogonal Nonnegative Matrix T-Factorizations for Clustering
,”
Intl. Conf. Knowl. Discov. Data Mining
,
2006
(
8
), pp.
126
135
.
22.
Bhatt
,
N.
, and
Varadhan
,
S. K. M.
,
2018
, “
Posture Similarity Index: A Method to Compare Hand Postures in Synergy Space
,”
PeerJ
,
6
(
12
), p.
e6078
.
23.
Norberto
,
M. S.
,
de Arruda
,
T. B.
, and
Papoti
,
M.
,
2020
, “
A New Approach to Evaluate Neuromuscular Fatigue of Extensor Elbow Muscles
,”
Front. Physiol.
,
11
, p.
553296
.
24.
Ison
,
M.
,
Vujaklija
,
I.
,
Whitsell
,
B.
,
Farina
,
D.
, and
Artemiadis
,
P.
,
2016
, “
High-Density Electromyography and Motor Skill Learning for Robust Long-Term Control of a 7-DOF Robot Arm
,”
IEEE Trans. Neur. Syst. Rehabil. Eng.
,
24
(
4
), pp.
424
433
.
You do not currently have access to this content.