Abstract
This research proposes a new compound fractional sliding mode control (FOSMC) and super-twisting control (FOSMC + STC) to control a microelectromechanical systems gyroscope. A new sliding mode surface has been defined to design the proposed new sliding mode controller. The main advantages of a FOSMC are its high tracking performance and robustness against external perturbation, but creating a chattering phenomenon is its main drawback. By applying a super-twisting control (STC) method with FOSMC, the chattering phenomenon is eliminated, the singularity problem is solved, and systems robustness has significantly improved. Simulation results validate the effectiveness of the proposed control approach.
References
1.
Yan
, W.
, Hou
, S.
, Fang
, Y.
, and Fei
, J.
, 2017
, “Robust Adaptive Nonsingular Terminal Sliding Mode Control of MEMS Gyroscope Using Fuzzy-Neural-Network Compensator
,” Int. J. Mach. Learn. Cybern.
, 8
(4
), pp. 1287
–1299
. 2.
Rahmani
, M.
, Ghanbari
, A.
, and Ettefagh
, M. M.
, 2016
, “Robust Adaptive Control of a Bio-inspired Robot Manipulator Using Bat Algorithm
,” Expert Syst. Appl.
, 56
, pp. 164
–176
. 3.
Rahmani
, M.
, Komijani
, H.
, Ghanbari
, A.
, and Ettefagh
, M. M.
, 2018
, “Optimal Novel Super-Twisting PID Sliding Mode Control of a MEMS Gyroscope Based on Multi-Objective bat Algorithm
,” Microsyst. Technol.
, 24
(6
), pp. 2835
–2846
. 4.
Yang
, N.
, and Liu
, C.
, 2013
, “A Novel Fractional-Order Hyperchaotic System Stabilization via Fractional Sliding-Mode Control
,” Nonlinear Dyn.
, 74
(3
), pp. 721
–732
. 5.
Gao
, Z.
, and Liao
, X.
, 2013
, “Integral Sliding Mode Control for Fractional-Order Systems With Mismatched Uncertainties
,” Nonlinear Dyn.
, 72
(1–2
), pp. 27
–35
. 6.
Balochian
, S.
, 2013
, “Sliding Mode Control of Fractional Order Nonlinear Differential Inclusion Systems
,” Evol. Syst.
, 4
(3
), pp. 145
–152
. 7.
Rabah
, K.
, Ladaci
, S.
, and Lashab
, M.
, 2017
, “A Novel Fractional Sliding Mode Control Configuration for Synchronizing Disturbed Fractional-Order Chaotic Systems
,” Pramana
, 89
(3
), p. 46
. 8.
Shah
, D.
, and Mehta
, A.
, 2017
, “Discrete-Time Sliding Mode Controller Subject to Real-Time Fractional Delays and Packet Losses for Networked Control System
,” Int. J. Control Autom. Syst.
, 15
(6
), pp. 2690
–2703
. 9.
Sun
, G.
, and Ma
, Z.
, 2017
, “Practical Tracking Control of Linear Motor With Adaptive Fractional Order Terminal Sliding Mode Control
,” IEEE/ASME Trans. Mechatron.
, 22
(6
), pp. 2643
–2653
. 10.
Wang
, Y.
, Gu
, L.
, Xu
, Y.
, and Cao
, X.
, 2016
, “Practical Tracking Control of Robot Manipulators With Continuous Fractional-Order Nonsingular Terminal Sliding Mode
,” IEEE Trans. Ind. Electron.
, 63
(10
), pp. 6194
–6204
. 11.
Aghababa
, M. P.
, 2014
, “Design of Hierarchical Terminal Sliding Mode Control Scheme for Fractional-Order Systems
,” ET Sci. Meas. Technol.
, 9
(1
), pp. 122
–133
. 12.
Wang
, H. P.
, Mustafa
, G. I.
, and Tian
, Y.
, 2018
, “Model-Free Fractional-Order Sliding Mode Control for an Active Vehicle Suspension System
,” Adv. Eng. Softw.
, 115
, pp. 452
–461
. 13.
Kaur
, S.
, and Narayan
, S.
, 2018
, “Fractional Order Uncertainty Estimator Based Hierarchical Sliding Mode Design for a Class of Fractional Order Non-Holonomic Chained System
,” ISA Trans.
, 77
, pp. 58
–70
. 14.
Khan
, A.
, and Tyagi
, A.
, 2017
, “Fractional Order Disturbance Observer Based Adaptive Sliding Mode Synchronization of Commensurate Fractional Order Genesio-Tesi System
,” AEU - Int. J. Electron. Commun.
, 82
, pp. 346
–357
. 15.
Ardjal
, A.
, Mansouri
, R.
, and Bettayeb
, M.
, 2018
, “Fractional Sliding Mode Control of Wind Turbine for Maximum Power Point Tracking
,” Trans. Inst. Meas. Control
, 41
(2
), pp. 447
–457
. 16.
Guruganesh
, R.
, Bandyopadhyay
, B.
, Arya
, H.
, and Singh
, G. K.
, 2018
, “Design and Hardware Implementation of Autopilot Control Laws for MAV Using Super Twisting Control
,” J. Intell. Rob. Syst.
, 90
(3–4
), pp. 455
–471
. 17.
Jeong
, C. S.
, Kim
, J. S.
, and Han
, S. I.
, 2018
, “Tracking Error Constrained Super-Twisting Sliding Mode Control for Robotic Systems
,” Int. J. Control Autom. Syst.
, 16
(2
), pp. 804
–814
. 18.
Chuei
, R.
, Cao
, Z.
, and Man
, Z.
, 2017
, “Super Twisting Observer Based Repetitive Control for Aperiodic Disturbance Rejection in a Brushless DC Servo Motor
,” Int. J. Control Autom. Syst.
, 15
(5
), pp. 2063
–2071
. 19.
Zargham
, F.
, and Mazinan
, A. H.
, 2018
, “Super-Twisting Sliding Mode Control Approach With Its Application to Wind Turbine Systems
,” Energy Syst.
, 10
(1
), pp. 211
–229
. 20.
Zhao
, Z.
, Gu
, H.
, Zhang
, J.
, and Ding
, G.
, 2017
, “Terminal Sliding Mode Control Based on Super-twisting Algorithm
,” J. Syst. Eng. Electron.
, 28
(1
), pp. 145
–150
. 21.
Lu
, K.
, and Xia
, Y.
, 2014
, “Finite-Time Attitude Control for Rigid Spacecraft-Based on Adaptive Super-Twisting Algorithm
,” IET Control. Theory Appl.
, 8
(15
), pp. 1465
–1477
. 22.
Evangelista
, C.
, Puleston
, P.
, Valenciaga
, F.
, and Fridman
, L. M.
, 2012
, “Lyapunov-Designed Super-twisting Sliding Mode Control for Wind Energy Conversion Optimization
,” IEEE Trans. Ind. Electron.
, 60
(2
), pp. 538
–545
. 23.
Becerra
, H. M.
, Hayet
, J. B.
, and Sagüés
, C.
, 2014
, “A Single Visual-Servo Controller of Mobile Robots With Super-twisting Control
,” Rob. Auton. Syst.
, 62
(11
), pp. 1623
–1635
. 24.
Salgado
, I.
, Kamal
, S.
, Bandyopadhyay
, B.
, Chairez
, I.
, and Fridman
, L.
, 2016
, “Control of Discrete-Time Systems Based on Recurrent Super-Twisting-Like Algorithm
,” ISA Trans.
, 64
, pp. 47
–55
. 25.
Rahmani
, M.
, 2018
, “MEMS Gyroscope Control Using a Novel Compound Robust Control
,” ISA Trans.
, 72
, pp. 37
–43
. 26.
Rahmani
, M.
, Ghanbari
, A.
, and Ettefagh
, M. M.
, 2016
, “Hybrid Neural Network Fraction Integral Terminal Sliding Mode Control of an Inchworm Robot Manipulator
,” Mech. Syst. Signal Process
, 80
, pp. 117
–136
. 27.
Rahmani
, M.
, Ghanbari
, A.
, and Ettefagh
, M. M.
, 2018
, “A Novel Adaptive Neural Network Integral Sliding-Mode Control of a Biped Robot Using Bat Algorithm
,” J. Vib. Control
, 24
(10
), pp. 2045
–2060
. 28.
Devanshu
, A.
, Singh
, M.
, and Kumar
, N.
, 2020
, “Sliding Mode Control of Induction Motor Drive Based on Feedback Linearization
,” IETE J. Res.
, 66
(2
), pp. 256
–269
. Copyright © 2022 by ASME
You do not currently have access to this content.