Abstract

This research proposes a new compound fractional sliding mode control (FOSMC) and super-twisting control (FOSMC + STC) to control a microelectromechanical systems gyroscope. A new sliding mode surface has been defined to design the proposed new sliding mode controller. The main advantages of a FOSMC are its high tracking performance and robustness against external perturbation, but creating a chattering phenomenon is its main drawback. By applying a super-twisting control (STC) method with FOSMC, the chattering phenomenon is eliminated, the singularity problem is solved, and systems robustness has significantly improved. Simulation results validate the effectiveness of the proposed control approach.

References

1.
Yan
,
W.
,
Hou
,
S.
,
Fang
,
Y.
, and
Fei
,
J.
,
2017
, “
Robust Adaptive Nonsingular Terminal Sliding Mode Control of MEMS Gyroscope Using Fuzzy-Neural-Network Compensator
,”
Int. J. Mach. Learn. Cybern.
,
8
(
4
), pp.
1287
1299
.
2.
Rahmani
,
M.
,
Ghanbari
,
A.
, and
Ettefagh
,
M. M.
,
2016
, “
Robust Adaptive Control of a Bio-inspired Robot Manipulator Using Bat Algorithm
,”
Expert Syst. Appl.
,
56
, pp.
164
176
.
3.
Rahmani
,
M.
,
Komijani
,
H.
,
Ghanbari
,
A.
, and
Ettefagh
,
M. M.
,
2018
, “
Optimal Novel Super-Twisting PID Sliding Mode Control of a MEMS Gyroscope Based on Multi-Objective bat Algorithm
,”
Microsyst. Technol.
,
24
(
6
), pp.
2835
2846
.
4.
Yang
,
N.
, and
Liu
,
C.
,
2013
, “
A Novel Fractional-Order Hyperchaotic System Stabilization via Fractional Sliding-Mode Control
,”
Nonlinear Dyn.
,
74
(
3
), pp.
721
732
.
5.
Gao
,
Z.
, and
Liao
,
X.
,
2013
, “
Integral Sliding Mode Control for Fractional-Order Systems With Mismatched Uncertainties
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
27
35
.
6.
Balochian
,
S.
,
2013
, “
Sliding Mode Control of Fractional Order Nonlinear Differential Inclusion Systems
,”
Evol. Syst.
,
4
(
3
), pp.
145
152
.
7.
Rabah
,
K.
,
Ladaci
,
S.
, and
Lashab
,
M.
,
2017
, “
A Novel Fractional Sliding Mode Control Configuration for Synchronizing Disturbed Fractional-Order Chaotic Systems
,”
Pramana
,
89
(
3
), p.
46
.
8.
Shah
,
D.
, and
Mehta
,
A.
,
2017
, “
Discrete-Time Sliding Mode Controller Subject to Real-Time Fractional Delays and Packet Losses for Networked Control System
,”
Int. J. Control Autom. Syst.
,
15
(
6
), pp.
2690
2703
.
9.
Sun
,
G.
, and
Ma
,
Z.
,
2017
, “
Practical Tracking Control of Linear Motor With Adaptive Fractional Order Terminal Sliding Mode Control
,”
IEEE/ASME Trans. Mechatron.
,
22
(
6
), pp.
2643
2653
.
10.
Wang
,
Y.
,
Gu
,
L.
,
Xu
,
Y.
, and
Cao
,
X.
,
2016
, “
Practical Tracking Control of Robot Manipulators With Continuous Fractional-Order Nonsingular Terminal Sliding Mode
,”
IEEE Trans. Ind. Electron.
,
63
(
10
), pp.
6194
6204
.
11.
Aghababa
,
M. P.
,
2014
, “
Design of Hierarchical Terminal Sliding Mode Control Scheme for Fractional-Order Systems
,”
ET Sci. Meas. Technol.
,
9
(
1
), pp.
122
133
.
12.
Wang
,
H. P.
,
Mustafa
,
G. I.
, and
Tian
,
Y.
,
2018
, “
Model-Free Fractional-Order Sliding Mode Control for an Active Vehicle Suspension System
,”
Adv. Eng. Softw.
,
115
, pp.
452
461
.
13.
Kaur
,
S.
, and
Narayan
,
S.
,
2018
, “
Fractional Order Uncertainty Estimator Based Hierarchical Sliding Mode Design for a Class of Fractional Order Non-Holonomic Chained System
,”
ISA Trans.
,
77
, pp.
58
70
.
14.
Khan
,
A.
, and
Tyagi
,
A.
,
2017
, “
Fractional Order Disturbance Observer Based Adaptive Sliding Mode Synchronization of Commensurate Fractional Order Genesio-Tesi System
,”
AEU - Int. J. Electron. Commun.
,
82
, pp.
346
357
.
15.
Ardjal
,
A.
,
Mansouri
,
R.
, and
Bettayeb
,
M.
,
2018
, “
Fractional Sliding Mode Control of Wind Turbine for Maximum Power Point Tracking
,”
Trans. Inst. Meas. Control
,
41
(
2
), pp.
447
457
.
16.
Guruganesh
,
R.
,
Bandyopadhyay
,
B.
,
Arya
,
H.
, and
Singh
,
G. K.
,
2018
, “
Design and Hardware Implementation of Autopilot Control Laws for MAV Using Super Twisting Control
,”
J. Intell. Rob. Syst.
,
90
(
3–4
), pp.
455
471
.
17.
Jeong
,
C. S.
,
Kim
,
J. S.
, and
Han
,
S. I.
,
2018
, “
Tracking Error Constrained Super-Twisting Sliding Mode Control for Robotic Systems
,”
Int. J. Control Autom. Syst.
,
16
(
2
), pp.
804
814
.
18.
Chuei
,
R.
,
Cao
,
Z.
, and
Man
,
Z.
,
2017
, “
Super Twisting Observer Based Repetitive Control for Aperiodic Disturbance Rejection in a Brushless DC Servo Motor
,”
Int. J. Control Autom. Syst.
,
15
(
5
), pp.
2063
2071
.
19.
Zargham
,
F.
, and
Mazinan
,
A. H.
,
2018
, “
Super-Twisting Sliding Mode Control Approach With Its Application to Wind Turbine Systems
,”
Energy Syst.
,
10
(
1
), pp.
211
229
.
20.
Zhao
,
Z.
,
Gu
,
H.
,
Zhang
,
J.
, and
Ding
,
G.
,
2017
, “
Terminal Sliding Mode Control Based on Super-twisting Algorithm
,”
J. Syst. Eng. Electron.
,
28
(
1
), pp.
145
150
.
21.
Lu
,
K.
, and
Xia
,
Y.
,
2014
, “
Finite-Time Attitude Control for Rigid Spacecraft-Based on Adaptive Super-Twisting Algorithm
,”
IET Control. Theory Appl.
,
8
(
15
), pp.
1465
1477
.
22.
Evangelista
,
C.
,
Puleston
,
P.
,
Valenciaga
,
F.
, and
Fridman
,
L. M.
,
2012
, “
Lyapunov-Designed Super-twisting Sliding Mode Control for Wind Energy Conversion Optimization
,”
IEEE Trans. Ind. Electron.
,
60
(
2
), pp.
538
545
.
23.
Becerra
,
H. M.
,
Hayet
,
J. B.
, and
Sagüés
,
C.
,
2014
, “
A Single Visual-Servo Controller of Mobile Robots With Super-twisting Control
,”
Rob. Auton. Syst.
,
62
(
11
), pp.
1623
1635
.
24.
Salgado
,
I.
,
Kamal
,
S.
,
Bandyopadhyay
,
B.
,
Chairez
,
I.
, and
Fridman
,
L.
,
2016
, “
Control of Discrete-Time Systems Based on Recurrent Super-Twisting-Like Algorithm
,”
ISA Trans.
,
64
, pp.
47
55
.
25.
Rahmani
,
M.
,
2018
, “
MEMS Gyroscope Control Using a Novel Compound Robust Control
,”
ISA Trans.
,
72
, pp.
37
43
.
26.
Rahmani
,
M.
,
Ghanbari
,
A.
, and
Ettefagh
,
M. M.
,
2016
, “
Hybrid Neural Network Fraction Integral Terminal Sliding Mode Control of an Inchworm Robot Manipulator
,”
Mech. Syst. Signal Process
,
80
, pp.
117
136
.
27.
Rahmani
,
M.
,
Ghanbari
,
A.
, and
Ettefagh
,
M. M.
,
2018
, “
A Novel Adaptive Neural Network Integral Sliding-Mode Control of a Biped Robot Using Bat Algorithm
,”
J. Vib. Control
,
24
(
10
), pp.
2045
2060
.
28.
Devanshu
,
A.
,
Singh
,
M.
, and
Kumar
,
N.
,
2020
, “
Sliding Mode Control of Induction Motor Drive Based on Feedback Linearization
,”
IETE J. Res.
,
66
(
2
), pp.
256
269
.
You do not currently have access to this content.