Abstract

In this letter, a systematic synthesis of a new class of smooth parameter projection operators is presented. To elaborate such an approach, the adaptive control problem for a nth-order, single-input, linearly parametrizable, nonlinear system in the controllable canonical structure is considered. The stability of the closed-loop adaptive system, with the augmentation of such a class of smooth projection operators, is analyzed by a Lyapunov-like analysis. With this systematic construction, two novel smooth projection operators are devised as examples. A simulation study is performed to validate the proposed strategy and compare its performance against a non-smooth, parameter projection solution.

References

1.
Tao
,
G.
,
2014
, “
Multivariable Adaptive Control: A Survey
,”
Automatica
,
50
(
11
), pp.
2737
2764
.
2.
Dong
,
H.
,
Hu
,
Q.
,
Liu
,
Y.
, and
Akella
,
M. R.
,
2019
, “
Adaptive Pose Tracking Control for Spacecraft Proximity Operations Under Motion Constraints
,”
J. Guid. Control Dyn.
,
42
(
10
), pp.
2258
2271
.
3.
Zhou
,
X.
,
Wang
,
Z.
,
Shen
,
H.
, and
Wang
,
J.
,
2022
, “
Yaw-Rate-Tracking-Based Automated Vehicle Path Following: An MRAC Methodology With a Closed-Loop Reference Model
,”
ASME J. Dyn. Syst. Meas. Control
,
2
(
2
), p.
021010
.
4.
Shen
,
H.
,
Zhou
,
X.
,
Wang
,
Z.
, and
Wang
,
J.
,
2022
, “
State of Charge Estimation for Lithium-Ion Battery Using Transformer With Immersion and Invariance Adaptive Observer
,”
J. Energy Storage
,
45
, p.
103768
.
5.
Cao
,
B.
, and
Kang
,
T.
,
2021
, “
Nonlinear Adaptive Control of COVID-19 With Media Campaigns and Treatment
,”
Biochem. Biophys. Res. Commun.
,
555
, pp.
202
209
.
6.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
,
2005
,
Stable Adaptive Systems
,
Dover Publications
,
Mineola, NY
.
7.
Akella
,
M. R.
,
2004
, “
Adaptive Control—A Departure From the Certainty-Equivalence Paradigm
,”
J. Astronaut. Sci.
,
52
(
1–2
), pp.
75
91
.
8.
Ioannou
,
P. A.
, and
Kokotovic
,
P. V.
,
1984
, “
Instability Analysis and Improvement of Robustness of Adaptive Control
,”
Automatica
,
20
(
5
), pp.
583
594
.
9.
Yao
,
B.
,
Bu
,
F.
,
Reedy
,
J.
, and
Chiu
,
G. T.-C.
,
2000
, “
Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments
,”
IEEE/ASME Trans. Mechatron.
,
5
(
1
), pp.
79
91
.
10.
Bakker
,
R.
, and
Annaswamy
,
A. M.
,
1996
, “
Stability and Robustness Properties of a Simple Adaptive Controller
,”
IEEE Trans. Automat. Contr.
,
41
(
9
), pp.
1352
1358
.
11.
Naik
,
S. M.
,
Kumar
,
P. R.
, and
Ydstie
,
B. E.
,
1992
, “
Robust Continuous-Time Adaptive Control by Parameter Projection
,”
IEEE Trans. Automat. Contr.
,
37
(
2
), pp.
182
197
.
12.
Akella
,
M. R.
, and
Subbarao
,
K.
,
2005
, “
A Novel Parameter Projection Mechanism for Smooth and Stable Adaptive Control
,”
Control Syst. Lett.
,
54
(
1
), pp.
43
51
.
13.
Teel
,
A. R.
,
1993
, “
Adaptive Tracking With Robust Stability
,”
Proceedings of 32nd IEEE Conference on Decision and Control
,”
IEEE
,
San Antonio, TX
,
Dec. 15–17
, pp.
570
575
.
14.
Pomet
,
J.-B.
, and
Praly
,
L.
,
1992
, “
Adaptive Nonlinear Regulation: Estimation From the Lyapunov Equation
,”
IEEE Trans. Automat. Contr.
,
37
(
6
), pp.
729
740
.
15.
Cai
,
Z.
,
deQueiroz
,
M. S.
, and
Dawson
,
D. M.
,
2006
, “
A Sufficiently Smooth Projection Operator
,”
IEEE Trans. Automat. Contr.
,
51
(
1
), pp.
135
139
.
16.
Boyd
,
S. P.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
17.
Chen
,
C.-T.
,
2013
,
Linear System Theory and Design
,
Oxford University Press
,
New York
.
18.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
19.
Zhou
,
X.
,
Wang
,
Z.
, and
Wang
,
J.
,
2022
, “
Automated Vehicle Path Following: A Non-Quadratic-Lyapunov-Function-Based Model Reference Adaptive Control Approach With Smooth Projection Modification
,”
IEEE Trans. Intell. Transport Syst.
, pp.
1
12
.
You do not currently have access to this content.