Abstract
In this letter, a systematic synthesis of a new class of smooth parameter projection operators is presented. To elaborate such an approach, the adaptive control problem for a nth-order, single-input, linearly parametrizable, nonlinear system in the controllable canonical structure is considered. The stability of the closed-loop adaptive system, with the augmentation of such a class of smooth projection operators, is analyzed by a Lyapunov-like analysis. With this systematic construction, two novel smooth projection operators are devised as examples. A simulation study is performed to validate the proposed strategy and compare its performance against a non-smooth, parameter projection solution.
Issue Section:
Research Papers
References
1.
Tao
, G.
, 2014
, “Multivariable Adaptive Control: A Survey
,” Automatica
, 50
(11
), pp. 2737
–2764
. 2.
Dong
, H.
, Hu
, Q.
, Liu
, Y.
, and Akella
, M. R.
, 2019
, “Adaptive Pose Tracking Control for Spacecraft Proximity Operations Under Motion Constraints
,” J. Guid. Control Dyn.
, 42
(10
), pp. 2258
–2271
. 3.
Zhou
, X.
, Wang
, Z.
, Shen
, H.
, and Wang
, J.
, 2022
, “Yaw-Rate-Tracking-Based Automated Vehicle Path Following: An MRAC Methodology With a Closed-Loop Reference Model
,” ASME J. Dyn. Syst. Meas. Control
, 2
(2
), p. 021010
. 4.
Shen
, H.
, Zhou
, X.
, Wang
, Z.
, and Wang
, J.
, 2022
, “State of Charge Estimation for Lithium-Ion Battery Using Transformer With Immersion and Invariance Adaptive Observer
,” J. Energy Storage
, 45
, p. 103768
. 5.
Cao
, B.
, and Kang
, T.
, 2021
, “Nonlinear Adaptive Control of COVID-19 With Media Campaigns and Treatment
,” Biochem. Biophys. Res. Commun.
, 555
, pp. 202
–209
. 6.
Narendra
, K. S.
, and Annaswamy
, A. M.
, 2005
, Stable Adaptive Systems
, Dover Publications
, Mineola, NY
.7.
Akella
, M. R.
, 2004
, “Adaptive Control—A Departure From the Certainty-Equivalence Paradigm
,” J. Astronaut. Sci.
, 52
(1–2
), pp. 75
–91
. 8.
Ioannou
, P. A.
, and Kokotovic
, P. V.
, 1984
, “Instability Analysis and Improvement of Robustness of Adaptive Control
,” Automatica
, 20
(5
), pp. 583
–594
. 9.
Yao
, B.
, Bu
, F.
, Reedy
, J.
, and Chiu
, G. T.-C.
, 2000
, “Adaptive Robust Motion Control of Single-Rod Hydraulic Actuators: Theory and Experiments
,” IEEE/ASME Trans. Mechatron.
, 5
(1
), pp. 79
–91
. 10.
Bakker
, R.
, and Annaswamy
, A. M.
, 1996
, “Stability and Robustness Properties of a Simple Adaptive Controller
,” IEEE Trans. Automat. Contr.
, 41
(9
), pp. 1352
–1358
. 11.
Naik
, S. M.
, Kumar
, P. R.
, and Ydstie
, B. E.
, 1992
, “Robust Continuous-Time Adaptive Control by Parameter Projection
,” IEEE Trans. Automat. Contr.
, 37
(2
), pp. 182
–197
. 12.
Akella
, M. R.
, and Subbarao
, K.
, 2005
, “A Novel Parameter Projection Mechanism for Smooth and Stable Adaptive Control
,” Control Syst. Lett.
, 54
(1
), pp. 43
–51
. 13.
Teel
, A. R.
, 1993
, “Adaptive Tracking With Robust Stability
,” Proceedings of 32nd IEEE Conference on Decision and Control
,” IEEE
, San Antonio, TX
, Dec. 15–17
, pp. 570
–575
.14.
Pomet
, J.-B.
, and Praly
, L.
, 1992
, “Adaptive Nonlinear Regulation: Estimation From the Lyapunov Equation
,” IEEE Trans. Automat. Contr.
, 37
(6
), pp. 729
–740
. 15.
Cai
, Z.
, deQueiroz
, M. S.
, and Dawson
, D. M.
, 2006
, “A Sufficiently Smooth Projection Operator
,” IEEE Trans. Automat. Contr.
, 51
(1
), pp. 135
–139
. 16.
Boyd
, S. P.
, and Vandenberghe
, L.
, 2004
, Convex Optimization
, Cambridge University Press
, Cambridge
.17.
Chen
, C.-T.
, 2013
, Linear System Theory and Design
, Oxford University Press
, New York
.18.
Slotine
, J.-J. E.
, and Li
, W.
, 1991
, Applied Nonlinear Control
, Prentice Hall
, Englewood Cliffs, NJ
.19.
Zhou
, X.
, Wang
, Z.
, and Wang
, J.
, 2022
, “Automated Vehicle Path Following: A Non-Quadratic-Lyapunov-Function-Based Model Reference Adaptive Control Approach With Smooth Projection Modification
,” IEEE Trans. Intell. Transport Syst.
, pp. 1
–12
. Copyright © 2022 by ASME
You do not currently have access to this content.