Abstract
Modeling of the hysteresis nonlinearities of the pneumatic artificial muscle (PAM) is critical when it is proposed to drive various high-precision mechatronics applications. This letter aims to characterize the hysteresis nonlinearities obtained experimentally of the PAM system under the load force effect. The load-dependent Prandtl–Ishlinskii (LDPI) model with a load-dependent weight function is proposed to model the measured hysteresis loop under different load forces. Comparing the measured hysteresis loops to the estimated loops of the LDPI model demonstrates the proposed model’s ability to characterize the asymmetric and load force effects in the hysteresis nonlinearities of the PAMs.
Issue Section:
Research Papers
References
1.
Zhang
, J.
, Sheng
, J.
, O’Neill
, C. T.
, Walsh
, C. J.
, Wood
, R. J.
, Ryu
, J.-H.
, Desai
, J. P.
, and Yip
, M. C.
, 2019
, “Robotic Artificial Muscles: Current Progress and Future Perspectives
,” IEEE Trans. Rob.
, 35
(3
), pp. 761
–781
. 2.
Chi
, H.
, Su
, H.
, Liang
, W.
, and Ren
, Q.
, 2021
, “Control of a Rehabilitation Robotic Device Driven by Antagonistic Soft Actuators
,” Actuators
, 10
(6
), pp. 1
–22
.3.
Wickramatunge
, K. C.
, and Leephakpreeda
, T.
, 2010
, “Study on Mechanical Behaviors of Pneumatic Artificial Muscle
,” Int. J. Eng. Sci.
, 48
(2
), pp. 188
–198
. 4.
Tondu
, B.
, and Lopez
, P.
, 2000
, “Modeling and Control of Mckibben Artificial Muscle Robot Actuators
,” IEEE Control Syst. Mag.
, 20
(2
), pp. 15
–38
.5.
Chou
, C.-P.
, and Hannaford
, B.
, 1996
, “Measurement and Modeling of Mckibben Pneumatic Artificial Muscles
,” IEEE Trans. Rob. Autom.
, 12
(1
), pp. 90
–102
. 6.
Vo-Minh
, T.
, Tjahjowidodo
, T.
, Ramon
, H.
, and Van Brussel
, H.
, 2010
, “A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using the Maxwell-Slip Model
,” IEEE/ASME Trans. Mechatron.
, 16
(1
), pp. 177
–186
. 7.
Li
, S.
, Meng
, D.
, Tang
, C.
, Zhong
, W.
, and Li
, A.
, 2021
, “Adaptive Robust Precision Motion Control of Single PAM Actuated Servo Systems With Non-Local Memory Hysteresis Force Compensation
,” ISA Trans.
, 112
(1
), pp. 337
–349
. 8.
Al Saaideh
, M.
, Khasawneh
, H. J.
, Zgoul
, M.
, Al-Ma’aita
, M.
, and Al Janaideh
, M.
, 2021
, “A Hyperbolic-Based Prandtl–Ishlinskii Model for a Loaded Pneumatic Artificial Muscle Actuator
,” 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT)
, Amman, Jordan
, Nov. 16–18
, IEEE, pp. 140
–145
.9.
Zhang
, Y.
, Liu
, H.
, Ma
, T.
, Hao
, L.
, and Li
, Z.
, 2021
, “A Comprehensive Dynamic Model for Pneumatic Artificial Muscles Considering Different Input Frequencies and Mechanical Loads
,” Mech. Syst. Signal. Process.
, 148
(1
), pp. 1
–19
.10.
Ganguly
, S.
, Garg
, A.
, Pasricha
, A.
, and Dwivedy
, S.
, 2012
, “Control of Pneumatic Artificial Muscle System Through Experimental Modelling
,” Mechatronics
, 22
(8
), pp. 1135
–1147
. 11.
Khajehsaeid
, H.
, Esmaeili
, B.
, Soleymani
, R.
, and Delkhosh
, A.
, 2019
, “Adaptive Back Stepping Fast Terminal Sliding Mode Control of Robot Manipulators Actuated by Pneumatic Artificial Muscles: Continuum Modelling, Dynamic Formulation and Controller Design
,” Meccanica
, 54
(8
), pp. 1203
–1217
. 12.
Ai
, Q.
, Peng
, Y.
, Zuo
, J.
, Meng
, W.
, and Liu
, Q.
, 2019
, “Hammerstein Model for Hysteresis Characteristics of Pneumatic Muscle Actuators
,” Int. J. Intell. Rob. Appl.
, 3
(1
), pp. 33
–44
. 13.
Al Janaideh
, M.
, Rakheja
, S.
, and Su
, C.-Y.
, 2010
, “An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control
,” IEEE/ASME Trans. Mechatron.
, 16
(4
), pp. 734
–744
. 14.
Al Janaideh
, M.
, and Aljanaideh
, O.
, 2018
, “Further Results on Open-Loop Compensation of Rate-Dependent Hysteresis in a Magnetostrictive Actuator With the Prandtl–Ishlinskii Model
,” Mech. Syst. Signal. Process.
, 104
(1
), pp. 835
–850
. 15.
Al Janaideh
, M.
, Al Saaideh
, M.
, and Rakotondrabe
, M.
, 2020
, “On Hysteresis Modeling of a Piezoelectric Precise Positioning System Under Variable Temperature
,” Mech. Syst. Signal. Process.
, 145
(1
), pp. 1
–27
. Copyright © 2022 by ASME
You do not currently have access to this content.