Abstract

The balance of inverted pendulum on inclined surfaces is the precursor to their control in unstructured environments. Researchers have devised control algorithms with feedback from contact (encoders—placed at the pendulum joint) and noncontact (gyroscopes, tilt) sensors. We present feedback control of inverted pendulum cart (IPC) on variable inclines using noncontact sensors and a modified error function. The system is in the state of equilibrium when it is not accelerating and not falling over (rotational equilibrium). This is achieved when the pendulum is aligned along the gravity vector. The control feedback is obtained from noncontact sensors comprising a pair of accelerometers placed on the inverted pendulum and one on the cart. The proposed modified error function is composed of the dynamic (nongravity) acceleration of the pendulum and the velocity of the cart. We prove that the system is in equilibrium when the modified error is zero. We present algorithm to calculate the dynamic acceleration and angle of the pendulum, and incline angle using accelerometer readings. Here, the cart velocity and acceleration are assumed to be proportional to the motor angular velocity and acceleration. Thereafter, we perform simulation using noisy sensors to illustrate the balance of IPC on surfaces with unknown inclination angles using proportional-integral-derivative feedback controller with saturated motor torque, including valley profile that resembles a downhill, flat, and uphill combination. The successful control of the system using the proposed modified error function and accelerometer feedback argues for future design of controllers for unstructured and unknown environments using all-accelerometer feedback.

References

1.
Grasser
,
F.
,
D’Arrigo
,
A.
,
Colombi
,
S.
, and
Rufer
,
A.
,
2002
, “
JOE: A Mobile, Inverted Pendulum
,”
IEEE Trans. Ind. Electron.
,
49
(
1
), pp.
107
114
.
2.
Lee
,
H.
, and
Jung
,
S.
,
2012
, “
Balancing and Navigation Control of a Mobile Inverted Pendulum Robot Using Sensor Fusion of Low Cost Sensors
,”
Mechatronics
,
22
(
1
), pp.
95
105
.
3.
Vasudevan
,
H.
,
Dollar
,
A. M.
, and
Morrell
,
J. B.
,
2015
, “
Design for Control of Wheeled Inverted Pendulum Platforms
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041005
.
4.
Wang
,
H.
,
Chamroo
,
A.
,
Vasseur
,
C.
, and
Koncar
,
V.
,
2008
, “
Hybrid Control for Vision Based Cart-Inverted Pendulum System
,”
2008 American Control Conference
,
Seattle, WA
,
June 11–13
, pp.
3845
3850
.
5.
Pathak
,
K.
,
Franch
,
J.
, and
Agrawal
,
S. K.
,
2005
, “
Velocity and Position Control of a Wheeled Inverted Pendulum by Partial Feedback Linearization
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
505
513
.
6.
Huang
,
J.
,
Guan
,
Z.
,
Matsuno
,
T.
,
Fukuda
,
T.
, and
Sekiyama
,
K.
,
2010
, “
Sliding-Mode Velocity Control of Mobile-Wheeled Inverted-Pendulum Systems
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
750
758
.
7.
Maithripala
,
D. H. S.
,
Madhushani
,
T. W. U.
, and
Berg
,
J. M.
,
2016
, “
A Geometric PID Control Framework for Mechanical Systems
,”
arXiv:1610.04395
.
8.
Maddahi
,
A.
,
Shamekhi
,
A. H.
, and
Ghaffari
,
A.
,
2015
, “
A Lyapunov Controller for Self-Balancing Two-Wheeled Vehicles.
,”
Robotica
,
33
(
1
), pp.
225
239
.
9.
Ibañez
,
C. A.
,
Frias
,
O. G.
, and
Castañón
,
M. S.
,
2005
, “
Lyapunov-Based Controller for the Inverted Pendulum Cart System
,”
Nonlinear Dyn.
,
40
(
4
), pp.
367
374
.
10.
Kwon
,
T.
, and
Hodgins
,
J.
,
2010
, “
Control Systems for Human Running Using an Inverted Pendulum Model and a Reference Motion Capture Sequence
,”
Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA’10
,
Madrid, Spain
,
July 2–4
,
Eurographics Association
, pp.
129
138
.
11.
Kiselev
,
O. M.
,
2020
, “
Stabilization of the Wheeled Inverted Pendulum on a Soft Surface
,”
arXiv:2006.05450
.
12.
Vikas
,
V.
, and
Crane
,
C.
,
2015
, “
Bioinspired Dynamic Inclination Measurement Using Inertial Sensors
,”
Bioinspirat. Biomimet.
,
10
(
3
), p.
036003
.
13.
Vikas
,
V.
, and
Crane
,
C. D.
,
2010
, “
Inclination Estimation and Balance of Robot Using Vestibular Dynamic Inclinometer
,”
IEEE/RAS International Conference on Humanoid Robots
,
Nashville, TN
,
Dec. 6–8
, pp.
245
250
.
14.
Zorn
,
A.
,
2002
, “
A Merging of System Technologies: All-Accelerometer Inertial Navigation and Gravity Gradiometry
,”
Position Location and Navigation Symposium, 2002 IEEE
,
Palm Springs, CA
,
Apr. 15–18
,
IEEE
, pp.
66
73
.
15.
Murray
,
R. M.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.