Abstract

Dual-stage actuators, which combine two actuators with different characteristics, have gained interest due to their large-range, high-resolution positioning capabilities. Control of such systems is challenging because it requires balancing the relative contributions of the individual actuators in terms of speed, range, and precision. The most common approach is to allocate effort to the actuators based on frequency but this can lead to misallocation in the case of low-frequency short-range trajectories. In this paper, the problem of trajectory allocation in dual-stage actuator systems is addressed using a recently developed range-based filter. The theoretical basis of the range-based filter is rigorously derived for the first time and insights regarding its use, specifically its reinterpretation as a speed-based filter, and its range-frequency response characteristics are presented. The new analysis not only explains the behavior of the filter clearly, but it provides a more robust strategy for incorporating range constraints in filter design for different desired trajectories.

References

1.
Kalyanam
,
K.
, and
Tsao
,
T.-C.
,
2012
, “
Two-Period Repetitive and Adaptive Control for Repeatable and Nonrepeatable Runout Compensation in Disk Drive Track Following
,”
IEEE/ASME Trans. Mechatron.
,
17
(
4
), pp.
756
766
.
2.
Zhang
,
H.
,
Huang
,
X.
,
Peng
,
G.
, and
Wang
,
M.
,
2009
, “
Dual-Stage HDD Head Positioning Using an h Almost Disturbance Decoupling Controller and a Tracking Differentiator
,”
Mechatronics
,
19
(
5
), pp.
788
796
.
3.
Tai
,
T.-L.
, and
Chen
,
J.-S.
,
2005
, “
Discrete-Time Sliding-Mode Controller for Dual-Stage Systems: A Hierarchical Approach
,”
Mechatronics
,
15
(
8
), pp.
949
967
.
4.
Peng
,
K.
,
Chen
,
B. M.
,
Lee
,
T. H.
, and
Venkataramanan
,
V.
,
2004
, “
Design and Implementation of a Dual-Stage Actuated HDD Servo System via Composite Nonlinear Control Approach
,”
Mechatronics
,
14
(
9
), pp.
965
988
.
5.
Horowitz
,
R.
,
Chen
,
T.-L.
,
Oldham
,
K.
, and
Li
,
Y.
,
2004
,
Microactuators for Dual-Stage Servo Systems in Magnetic Disk Files
,
Springer
,
Berlin/Heidelberg
.
6.
Horowitz
,
R.
,
Li
,
Y.
,
Oldham
,
K.
,
Kon
,
S.
, and
Huang
,
X.
,
2007
, “
Dual-Stage Servo Systems and Vibration Compensation in Computer Hard Disk Drives
,”
Control Eng. Pract.
,
15
(
3
), pp.
291
305
.
7.
Li
,
Y.
, and
Horowitz
,
R.
,
2002
, “
Design and Testing of Track-Following Controllers for Dual-Stage Servo Systems With PZT Actuated Suspensions
,”
Microsyst. Technol.
,
8
(
2–3
), pp.
194
205
.
8.
Bagherieh
,
O.
,
Shah
,
P.
, and
Horowitz
,
R.
,
2018
, “
Application of Mixed h2/h∞ Data Driven Control Design to Dual Stage Hard Disk Drives
,”
2018 ASME Dynamic Systems and Control Conference (DSCC)
,
Atlanta, GA
,
Sept. 30– Oct. 3
.
9.
Seo
,
T. W.
,
Kim
,
H. S.
,
Kang
,
D. S.
, and
Kim
,
J.
,
2008
, “
Gain-Scheduled Robust Control of a Novel 3-dof Micro Parallel Positioning Platform via a Dual Stage Servo System
,”
Mechatronics
,
18
(
9
), pp.
495
505
.
10.
Zhao
,
D.
,
Huang
,
P.
,
Guo
,
P.
,
Zhu
,
L.
, and
Zhu
,
Z.
,
2020
, “
Development of a Piezoelectrically Actuated Dual-Stage Fast Tool Servo
,”
Mech. Syst. Signal Process
,
144
, p.
106873
.
11.
Hung
,
S.
,
Hwu
,
E.
,
Chen
,
M.
, and
Fu
,
L.
,
2007
, “
Dual-Stage Piezoelectric Nano-Positioner Utilizing a Range-Extended Optical Fiber Fabry-Perot Intereferometer
,”
IEEE/ASME Trans. Mechatron.
,
12
(
3
), pp.
291
298
.
12.
Tuma
,
T.
,
Haeberle
,
W.
,
Rothuizen
,
H.
,
Lygeros
,
J.
,
Pantazi
,
A.
, and
Sebastian
,
A.
,
2014
, “
Dual-Stage Nanopositioning for High-Speed Scanning Probe Microscopy
,”
IEEE/ASME Trans. Mechatron.
,
19
(
3
), pp.
1035
1045
.
13.
Fleming
,
A. J.
,
2011
, “
Dual-Stage Vertical Feedback for High-Speed Scanning Probe Microscopy
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
156
165
.
14.
Ito
,
S.
,
Neyer
,
D.
,
Steininger
,
J.
, and
Schitter
,
G.
,
2017
, “
Dual Actuation of Fast Scanning Axis for High-Speed Atomic Force Microscopy
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
7633
7638
.
15.
Kuiper
,
S.
, and
Schitter
,
G.
,
2012
, “
Model-Based Feedback Controller Design for Dual Actuated Atomic Force Microscopy
,”
Mechatronics
,
22
(
3
), pp.
327
337
.
Special Issue on Mechatronic Systems for Micro- and Nanoscale Applications
.
16.
Nagel
,
W. S.
,
Clayton
,
G. M.
, and
Leang
,
K. K.
,
2016
, “
Master-Slave Control With Hysteresis Inversion for Dual-Stage Nanopositioning Systems
,”
2016 American Control Conference (ACC)
,
Boston, MA
,
July 6–8
, pp.
655
660
.
17.
Schroeck
,
S. J.
,
Messner
,
W. C.
, and
McNab
,
R. J.
,
March 2001
, “
On Compensator Design for Linear Time-Invariant Dual-Input Single-Output Systems
,”
IEEE/ASME Trans. Mechatron.
,
6
(
1
), pp.
50
57
.
18.
Clayton
,
G. M.
,
Dudley
,
C. J.
, and
Leang
,
K. K.
,
2014
, “
Range-Based Control of Dual-Stage Nanopositioning Systems
,”
Rev. Sci. Instrum.
,
85
(
4
), p.
045003
.
19.
Guo
,
D.
,
Nagel
,
W. S.
,
Clayton
,
G. M.
, and
Kam
,
K. K.
,
2020
, “
Spatial-Temporal Trajectory Redesign for Dual-Stage Nanopositioning Systems With Application in AFM
,”
IEEE/ASME Trans. Mechatron.
,
25
(
2
), pp.
558
569
.
20.
Mitrovic
,
A.
,
Nagel
,
W. S.
,
Leang
,
K. K.
, and
Clayton
,
G. M.
,
2020
, “
Closed-Loop Range-Based Control of Dual-Stage Nanopositioning Systems
,”
IEEE/ASME Trans. Mechatron.
,
26
(
3
), pp.
1412
1421
.
21.
Mitrovic
,
A.
,
Leang
,
K. K.
, and
Clayton
,
G. M.
,
2020
, “
Analysis and Experimental Comparison of Range-Based Control for Dual-Stage Nanopositioners
,”
Mechatronics
,
69
, p.
102371
.
You do not currently have access to this content.