Abstract

In this work, a new drive concept for brushless direct current (BLDC) motors is introduced. Energy regeneration is optimally managed with the aim of improving the energy efficiency of robot motion controls. The proposed scheme has three independent regenerative drives interconnected in a wye configuration. An augmented model of the robot, joint mechanisms, and BLDC motors is formed, and then a voltage-based control scheme is developed. The control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance. Furthermore, the proposed concept showed a reduction of 15% energy consumption for the conditions of the study.

References

1.
Shimizu
,
T.
, and
Underwood
,
C.
,
2013
, “
Super-Capacitor Energy Storage for Micro-Satellites: Feasibility and Potential Mission Applications
,”
Acta Astronautica
,
85
, pp.
138
154
.
2.
Hamza
,
A.
, and
Ayanian
,
N.
,
2017
, “
Forecasting Battery State of Charge for Robot Missions
,” Proceedings of the Symposium on Applied Computing, pp.
249
255
.
3.
Richter
,
H.
,
2020
, “
Control for Optimal Energy Regeneration From Autorotation in UAVS
,” 2020 American Control Conference (ACC),
IEEE
, pp.
5108
5113
.
4.
Khalaf
,
P.
,
Warner
,
H.
,
Hardin
,
E.
,
Richter
,
H.
, and
Simon
,
D.
,
2018
, “
Development and Experimental Validation of an Energy Regenerative Prosthetic Knee Controller and Prototype
,” Dynamic Systems and Control Conference, Vol.
51890
,
American Society of Mechanical Engineers
, p.
V001T07A008
.
5.
He
,
X.
,
Liu
,
H.
,
He
,
S.
,
Hu
,
B.
, and
Xiao
,
G.
,
2019
, “
Research on the Energy Efficiency of Energy Regeneration Systems for a Battery-Powered Hydrostatic Vehicle
,”
Energy
,
178
, pp.
400
418
.
6.
Yang
,
M.-J.
,
Jhou
,
H.-L.
,
Ma
,
B.-Y.
, and
Shyu
,
K.-K.
,
2009
, “
A Cost-Effective Method of Electric Brake With Energy Regeneration for Electric Vehicles
,”
IEEE. Trans. Ind. Electron.
,
56
(
6
), pp.
2203
2212
.
7.
Yi
,
H.-S.
, and
Cha
,
S.
,
2019
, “
Optimal Energy Management of the Electric Excavator Using Super Capacitor
,”
Int. J. Precision Engi. Manuf.-Green Technol.
,
8
, pp.
1
14
.
8.
Laschowski
,
B.
,
McPhee
,
J.
, and
Andrysek
,
J.
,
2019
, “
Lower-Limb Prostheses and Exoskeletons With Energy Regeneration: Mechatronic Design and Optimization Review
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
040801
.
9.
Trzaska
,
Z.
,
2018
, “
Effective Harvesting of Braking Energy in Electric Cars
,”
J. KONES
,
25
(
1
), pp.
407
422
.
10.
Richter
,
H.
,
2015
, “
A Framework for Control of Robots With Energy Regeneration
,”
ASME J. Dyn. Syst. Meas. Control.
,
137
(
9
), p.
091004
.
11.
Khalaf
,
P.
, and
Richter
,
H.
,
2019
, “
Trajectory Optimization of Robots With Regenerative Drive Systems: Numerical and Experimental Results
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
501
516
.
12.
Godfrey
,
A. J.
, and
Sankaranarayanan
,
V.
,
2018
, “
A New Electric Braking System With Energy Regeneration for a Bldc Motor Driven Electric Vehicle
,”
Eng. Sci. Technol., An Int. J.
,
21
(
4
), pp.
704
713
.
13.
De Viaene
,
J.
,
Verbelen
,
F.
,
Derammelaere
,
S.
, and
Stockman
,
K.
,
2018
, “
Energy-Efficient Sensorless Load Angle Control of a Bldc Motor Using Sinusoidal Currents
,”
IET Electric Power Appl.
,
12
(
9
), pp.
1378
1389
.
14.
Husain
,
I.
,
2021
,
Electric and Hybrid Vehicles: Design Fundamentals
,
CRC Press
,
Boca Raton, FL
.
15.
Ehsani
,
M.
,
Gao
,
Y.
, and
Emadi
,
A.
,
2009
,
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design
,
CRC Press
,
Boca Raton, FL
.
16.
Khalaf
,
P.
, and
Richter
,
H.
,
2020
, “
Trajectory Optimization of Robots With Regenerative Drive Systems: Numerical and Experimental Results
,”
IEEE Trans. Rob.
,
36
(
2
), pp.
501
516
.
17.
Richter
,
H.
,
Simon
,
D.
, and
Van Den Bogert
,
A.
,
2014
, “
Semiactive Virtual Control Method for Robots With Regenerative Energy-Storing Joints
,”
IFAC Proc. Volumes
,
47
(
3
), pp.
10244
10250
.
18.
Carabin
,
G.
,
Wehrle
,
E.
, and
Vidoni
,
R.
,
2017
, “
A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems
,”
Robotics
,
6
(
4
), p.
39
.
19.
Hemati
,
N.
,
Thorp
,
J. S.
, and
Leu
,
M. C.
,
1990
, “
Robust Nonlinear Control of Brushless Dc Motors for Direct-Drive Robotic Applications
,”
IEEE. Trans. Ind. Electron.
,
37
(
6
), pp.
460
468
.
20.
Xu
,
H.
, and
Jani
,
Y.
,
2008
, “
Understanding Sensorless Vector Control for Brushless DC Motors
,”
IEEE Embedded Systems Conference Silicon Valley
,
San Jose, CA
,
Apr. 14–18
, pp.
3
22
.
21.
Abu-Rub
,
H.
,
Iqbal
,
A.
, and
Guzinski
,
J.
,
2012
,
High Performance Control of AC Drives With MATLAB/Simulink Models
,
John Wiley & Sons
,
New York
.
22.
Pillay
,
P.
, and
Krishnan
,
R.
,
1989
, “
Modeling, Simulation, and Analysis of Permanent-Magnet Motor Drives. II. The Brushless DC Motor Drive
,”
IEEE. Trans. Ind. Appl.
,
25
(
2
), pp.
274
279
.
23.
Krishnan
,
R.
,
2017
,
Permanent Magnet Synchronous and Brushless DC Motor Drives
,
CRC Press
,
Boca Raton, FL
.
24.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2020
, “
Energy-Optimal, Direct-Phase Control of Brushless Motors for Robotic Drives
,”
Proceedings of the ASME 2020 Dynamic Systems and Control Conference, Volume 1
,
Virtual, Online
,
Oct. 5–7
, p.
V001T05A006
.
25.
Ghorbanpour
,
A.
, and
Richter
,
H.
,
2018
, “
Control With Optimal Energy Regeneration in Robot Manipulators Driven by Brushless DC Motors
,”
Proceedings of the ASME 2018 Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
, p.
V001T04A003
.
26.
Joy
,
J.
, and
Ushakumari
,
S.
,
2018
, “
Regenerative Braking Mode Operation of a Three-Phase H-Bridge Inverter Fed PMBLDC Motor Generator Drive in an Electric Bike
,”
Electric Power Components and Syst.
,
46
(
10
), pp.
1
19
.
27.
Yacef
,
F.
,
Rizoug
,
N.
,
Bouhali
,
O.
, and
Hamerlain
,
M.
,
2017
, “
Optimization of Energy Consumption for Quadrotor UAV
,”
Proceedings of the International Micro Air Vehicle Conference and Flight Competition (IMAV)
,
Toulouse, France
,
Sep.
, pp.
18
21
.
28.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
, Vol.
3
.
Wiley
,
New York
.
29.
Hernández-Guzmán
,
V. M.
, and
Orrante-Sakanassi
,
J.
,
2021
, “
Pid Control of Robot Manipulators Actuated by BLDC Motors
,”
Int. J. Control.
,
94
(
2
), pp.
267
276
.
30.
Tabarraee
,
K.
,
Iyer
,
J.
,
Chiniforoosh
,
S.
, and
Jatskevich
,
J.
,
2011
, “
Comparison of Brushless DC Motors With Trapezoidal and Sinusoidal Back-EMF
,”
2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE)
,
Niagara Falls, ON, Canada
,
May 8–11
, IEEE, p.
000803
.
31.
Kim
,
Y.
,
Chang
,
N.
,
Wang
,
Y.
, and
Pedram
,
M.
,
2010
, “
Maximum Power Transfer Tracking for a Photovoltaic-Supercapacitor Energy System
,”
In Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design 2010
,
Austin, TX
,
Aug. 18–20
, pp.
307
312
.
You do not currently have access to this content.