Abstract

In this article, we present a new contact resonance atomic force microscopy-based method utilizing a square, plate-like microsensor to accurately estimate viscoelastic sample properties. A theoretical derivation, based on Rayleigh–Ritz method and on an “unconventional” generalized eigenvalue problem, is presented and a numerical experiment is devised to verify the method. We present an updated sensitivity criterion that allows users, given a set of measured in-contact eigenfrequencies and modal damping ratios, to select the best eigenfrequency for accurate data estimation. The verification results are then presented and discussed. Results show that the proposed method performs extremely well in the identification of viscoelastic properties over broad ranges of nondimensional sample stiffness and damping values.

References

1.
Rabe
,
U.
, and
Arnold
,
W.
,
1994
, “
Acoustic Microscopy by Atomic-Force Microscopy
,”
Appl. Phys. Lett.
,
64
(
12
), pp.
1493
1495
. 10.1063/1.111869
2.
Hurley
,
D. C.
,
Kopycinska-Müller
,
M.
, and
Kos
,
A. B.
,
2007
, “
Mapping Mechanical Properties on the Nanoscale Using Atomic-Force Acoustic Microscopy
,”
J. Miner. Metals Mater. Soc.
,
59
(
1
), pp.
23
29
. 10.1007/s11837-007-0005-8
3.
Yuya
,
P.
,
Hurley
,
D.
, and
Turner
,
J. A.
,
2008
, “
Contact-Resonance Atomic Force Microscopy for Viscoelasticity
,”
J. Appl. Phys.
,
104
(
7
), p.
074916
. 10.1063/1.2996259
4.
Killgore
,
J. P.
,
Yablon
,
D. G.
,
Tsou
,
A. H.
,
Gannepalli
,
A.
,
Yuya
,
P. A.
,
Turner
,
J. A.
,
Proksch
,
R.
, and
Hurley
,
D. C.
,
2011
, “
Viscoelastic Property Mapping With Contact Resonance Force Microscopy
,”
Langmuir
,
27
(
23
), pp.
13983
13987
. 10.1021/la203434w
5.
Qian
,
W.
,
Li
,
W.
,
Nguyen
,
C.
,
Johnson
,
T. J.
, and
Turner
,
J. A.
,
2020
, “
Quantitative Nanoscale Measurements of the Thermomechanical Properties of Poly-Ether-Ether-Ketone (PEEK)
,”
J. Polym. Sci.
,
58
(
11
), pp.
1544
1552
. 10.1002/pol.20190274
6.
Reggente
,
M.
,
Angeloni
,
L.
,
Passeri
,
D.
,
Chevallier
,
P.
,
Turgeon
,
S.
,
Mantovani
,
D.
, and
Rossi
,
M.
,
2020
, “
Mechanical Characterization of Methanol Plasma Treated Fluorocarbon Ultrathin Films Through Atomic Force Microscopy
,”
Front. Mater.
,
6
, p.
338
. 10.3389/fmats.2019.00338
7.
Aureli
,
M.
,
Ahsan
,
S. N.
,
Shihab
,
R. H.
, and
Tung
,
R. C.
,
2018
, “
Plate Geometries for Contact Resonance Atomic Force Microscopy: Modeling, Optimization, and Verification
,”
J. Appl. Phys.
,
124
(
1
), p.
014503
. 10.1063/1.5038727
8.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1987
,
Theory of Plates and Shells
, 2nd ed.,
McGraw-Hill
,
New York
.
9.
Leissa
,
A. W.
,
1969
, “
Vibration of Plates
,”
Report No. NASA SP-160, Technical Report
, NASA Headquarters, Washington, DC.
10.
Boresi
,
A. P.
, and
Schmidt
,
R. J.
,
2003
,
Advanced Mechanics of Materials
, 6th ed.,
Wiley
,
New York
.
11.
Reddy
,
J. N.
,
1984
,
Energy and Variational Methods in Applied Mechanics: With an Introduction to the Finite Element Method
,
Wiley
,
New York
.
12.
Mura
,
T.
, and
Koya
,
T.
,
1992
,
Variational Methods in Mechanics
,
Oxford University Press
,
New York
.
13.
Meirovitch
,
L.
,
1967
,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
14.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1990
,
Matrix Analysis
,
Cambridge University Press
,
Cambridge, UK
.
15.
Frazer
,
R. A.
,
Duncan
,
W. J.
, and
Collar
,
A. R.
,
1957
,
Elementary Matrices
,
Cambridge University Press
,
New York
.
16.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1967
,
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
,
Dover Publications Inc.
,
New York
.
17.
Press
,
W. H.
,
Teukolsky
,
S. A.
,
Vetterling
,
W. T.
, and
Flannery
,
B. P.
,
1992
,
Numerical Recipes in Fortran
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
18.
Dowling
,
N. E.
,
2012
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Pearson
,
Boston, MA
.
You do not currently have access to this content.