Abstract

The demand for clean, sustainable, and cost-effective energy continues to increase due to global population growth and the corresponding use of consumer products. The provision of heat to a thermoacoustic prime mover results in the generation of an acoustic wave that can be converted into electrical power. Thermoacoustic devices offer highly reliable and transportable power generation with low environmental impact using a variety of fuel sources. This paper focuses on the design and testing of a single-stage, traveling-wave, thermoacoustic engine. The system configuration, component design, and integration of sensors will be described. Performance testing and system analysis show that for a 300 W heat source, the thermoacoustic machine generates a 54 Hz acoustic wave with a thermal efficiency of 7.8%. The system’s acoustic power output may be increased by 84% through improved heat exchanger design. Tuning of the acoustic system and optimization of the bi-directional turbine merit attention to realize an applicable waste heat energy harvesting system.

References

References
1.
Ceperley
,
P. H.
,
May 1979
, “
A Pistonless Stirling Engine–The Traveling Wave Heat Engine
,”
J. Acoust. Soc. Am.
,
66
(
5
), pp.
1508
1513
. 10.1121/1.383505
2.
Backhaus
,
S.
, and
Swift
,
G. W.
,
June 2000
, “
A Thermoacoustic-Stirling Heat Engine: Detailed Study
,”
J. Acoust. Soc. Am.
,
107
(
6
), pp.
3148
3166
. 10.1121/1.429343
3.
De Blok
,
K.
,
2010
, “
Novel 4-Stage Traveling Wave Thermoacoustic Power Generator
,”
ASME 3rd Joint US-European Fluids Engineering Summer Meeting and 8th International Conference on Nanochannels, Microchannels, and Minichannels
,
Montreal, Canada
, pp.
73
79
.
4.
De Blok
,
K.
,
2012
, “
Multi-Stage Traveling Wave Thermoacoustics in Practice
,”
19th International Congress on Sound and Vibration
,
Vilnius, Lithuania
.
5.
Rott
,
N.
,
1980
, “
Thermoacoustics
,”
Adv. Appl. Mech.
,
20
, pp.
135
175
. 10.1016/S0065-2156(08)70233-3
6.
Yu
,
Z.
, and
Jaworski
,
A. J.
,
Feb. 2010
, “
Impact of Acoustic Impedance and Flow Resistance on the Power Output Capacity of the Regenerators in Travelling-Wave Thermoacoustic Engines
,”
Energy Convers. Manage.
,
51
(
2
), pp.
350
359
. 10.1016/j.enconman.2009.09.032
7.
Yu
,
Z.
,
Jaworski
,
A. J.
, and
Backhaus
,
S.
,
Nov. 2012
, “
Travelling-Wave Thermoacoustic Electricity Generator Using an Ultra-Compliant Alternator for Utilization of Low-Grade Thermal Energy
,”
Appl. Energy
,
99
, pp.
135
145
. 10.1016/j.apenergy.2012.04.046
8.
De Blok
,
K.
, Dec.
2015
,
Private Communication
.
9.
Telesz
,
M.
,
2006
, “
Design and Testing of a Thermoacoustic Power Converter
,” M.S. thesis,
Department of Mechaniccal Engineering, Georgia Institute of Technology
,
Atlanta, GA
.
10.
Abduljalil
,
A. S. A.
,
Yu
,
Z.
, and
Jaworski
,
A. J.
,
2011
, “
Design and Experimental Validation of Looped-Tube Thermoacoustic Engine
,”
J. Therm. Sci.
,
20
(
5
), pp.
423
429
. 10.1007/s11630-011-0490-5
11.
Swift
,
G. W.
,
2002
,
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
,
Acoustical Society of America through the American Institute of Physics
,
Melville, NY
.
12.
Ward
,
W. C.
, and
Swift
,
G. W.
,
June 1994
, “
Design Environment for Low-Amplitude Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
95
(
6
), pp.
3671
3672
. 10.1121/1.409938
13.
Ward
,
B.
,
Clark
,
J.
, and
Swift
,
G.
,
2016
,
Design Environment for Low-Amplitude Thermoacoustic Energy Conversion Version 6.4b2 User’s Guide
,
Los Alamos National Laboratory
,
Los Alamos, NM
.
14.
Tijani
,
M. E. H.
, and
Spoelstra
,
S.
,
Nov. 2011
, “
A High Performance Thermoacoustic Engine
,”
J. Appl. Phys.
,
110
(
9
), p.
093519
. 10.1063/1.3658872
15.
McGaughy
,
M.
,
Boessneck
,
E.
,
Salem
,
T.
, and
Wagner
,
J.
, 2018, “
Critical Design Elements for Traveling Wave Thermoacoustic Engines
,”
Proceedings of the ASME 2018 Power and Energy Conference, 2018-7376
,
Lake Buena Vista, FL
,
June
.
16.
Collard
,
S.
,
2012
, “
Design and Assembly of a Thermoacoustic Engine Prototype
,” B.S. thesis,
Department of Environmental Engineering, Helsinki Metropolia University of Applied Sciences
,
Helsinki, Finland
.
17.
Fusco
,
A. M.
,
Ward
,
W. C.
, and
Swift
,
G. W.
,
Dec. 1991
, “
Two-Sensor Power Measurement in Lossy Ducts
,”
J. Acoust. Soc. Am.
,
91
(
4
), pp.
2229
2235
. 10.1121/1.403656
18.
De Block
,
K.
,
Feb. 2017
, Private Communication.
19.
De Blok
,
K.
,
Owczarek
,
P.
, and
Francois
,
M.
,
2014
, “
Bi-Directional Turbines for Converting Acoustic Wave Power Into Electricity
,”
9th PAMIR International Conference
,
Riga, Latvia
, pp.
433
438
.
20.
Kloprogge
,
T.
,
2012
, “
Turbine Design for Thermo-Acoustic Generator
,”
B.S. thesis
,
Department of Aeronautical Engineering
,
Hogeschool INHolland, Delft, Neitherlands
.
21.
Boessneck
,
E.
, and
Salem
,
T.
,
2016
, “
Performance Characterization of Bi-Directional Turbines for Use in Thermoacoustic Generator Applications
,”
Proceedings of the ASME 2016 Power and Energy Conference, ES2016-59372
,
Charlotte, NC
.
You do not currently have access to this content.