Abstract

Li-ion batteries are the preferred choice of energy storage in many applications. However, the potential for fire and explosion due to mechanical damage remains a safety concern. Currently, there are no criteria for the extent of the mechanical damage under which the batteries are safe to use. Here, we investigate the effects of bending damage to Li-ion cells on their impedance spectra. After the initial characterization of four Li-ion pouch cells, one of the cells underwent a three-point bending load. We measured the impedance spectra of this cell after each increment of loading. The impedance data of the control group cells were collected at the same intervals as the damaged cell. A distributed equivalent circuit model (dECM) was developed using the data from the electrochemical impedance spectroscopy (EIS) procedure. We observed that several model parameters such as the magnitude of constant phase elements had similar trends in the control cells and the bent cell. However, some model parameters such as resistances in parallel with constant phase elements, and the inductor showed dependency on the extent of the damage. These results suggest the potential for use of such parameters as an indicator of mechanical damage when visual inspection of cells is not possible in a battery pack setup. Future steps include investigation of similar trends for other commercial batteries and chemistries and form factors to verify the applicability of the current findings in a broader context.

References

References
1.
Tarascon
,
J.-M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
, pp.
359
367
.
2.
Sahraei
,
E.
,
Gilaki
,
M.
,
Lynch
,
W.
,
Kirtley
,
J.
, and
Soudbakhsh
,
D.
,
2019
, “
Cycling Results of Mechanically Damaged Li-Ion Batteries
,”
2019 IEEE Electric Ship Technologies Symposium (ESTS)
,
Washington, DC
,
August
, pp.
226
230
.
3.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power. Sources
,
220
, pp.
360
372
. 10.1016/j.jpowsour.2012.07.057
4.
Stacy
,
A.
,
Gilaki
,
M.
,
Sahraei
,
E.
, and
Soudbakhsh
,
D.
,
2020
, “
Investigating the Effects of Mechanical Damage on Electrical Response of Li-Ion Pouch Cells
,”
2020 American Control Conference
,
Denver, CO
,
July
, pp.
1715
1720
.
5.
Rivera-Barrera
,
J. P.
,
Muñoz-Galeano
,
N.
, and
Sarmiento-Maldonado
,
H. O.
,
2017
, “
Soc Estimation for Lithium-Ion Batteries: Review and Future Challenges
,”
Electronics
,
6
(
4
), p.
102
. 10.3390/electronics6040102
6.
Sarmah
,
S. B.
,
Kalita
,
P.
,
Garg
,
A.
,
Niu
,
X.-d.
,
Zhang
,
X. -W.
,
Peng
,
X.
, and
Bhattacharjee
,
D.
,
2019
, “
A Review of State of Health Estimation of Energy Storage Systems: Challenges and Possible Solutions for Futuristic Applications of Li-Ion Battery Packs in Electric Vehicles
,”
ASME J. Electrochem. Energy. Convers. Storage.
,
16
(
4
), p.
040801
. 10.1115/1.4042987
7.
Tian
,
H.
,
Qin
,
P.
,
Li
,
K.
, and
Zhao
,
Z.
,
2020
, “
A Review of the State of Health for Lithium-Ion Batteries: Research Status and Suggestions
,”
J. Cleaner. Prod.
,
261
, p.
120813
. 10.1016/j.jclepro.2020.120813
8.
Stuart
,
T.
,
Fang
,
F.
,
Wang
,
X.
,
Ashtiani
,
C.
, and
Pesaran
,
A.
,
2002
, “
A Modular Battery Management System for HEVs
,”
SAE Trans.
, pp.
777
785
. https://doi.org/10.4271/2002-01-1918
9.
Verbrugge
,
M. W.
, and
Conell
,
R. S.
,
2002
, “
Electrochemical and Thermal Characterization of Battery Modules Commensurate With Electric Vehicle Integration
,”
J. Electrochem. Soc.
,
149
(
1
), pp.
A45
A53
. 10.1149/1.1426395
10.
Schweighofer
,
B.
,
Raab
,
K. M.
, and
Brasseur
,
G.
,
2003
, “
Modeling of High Power Automotive Batteries by the Use of an Automated Test System
,”
IEEE Trans. Instrum. Meas.
,
52
(
4
), pp.
1087
1091
. 10.1109/TIM.2003.814827
11.
Chaturvedi
,
N. A.
,
Klein
,
R.
,
Christensen
,
J.
,
Ahmed
,
J.
, and
Kojic
,
A.
,
2010
, “
Algorithms for Advanced Battery-Management Systems
,”
IEEE Control Syst. Mag.
,
30
(
3
), pp.
49
68
. 10.1109/MCS.2010.936293
12.
Chen
,
L.
,
,
Z.
,
Lin
,
W.
,
Li
,
J.
, and
Pan
,
H.
,
2018
, “
A New State-of-Health Estimation Method for Lithium-Ion Batteries Through the Intrinsic Relationship Between Ohmic Internal Resistance and Capacity
,”
Measurement
,
116
, pp.
586
595
. 10.1016/j.measurement.2017.11.016
13.
Andre
,
D.
,
Meiler
,
M.
,
Steiner
,
K.
,
Wimmer
,
C.
,
Soczka-Guth
,
T.
, and
Sauer
,
D.
,
2011
, “
Characterization of High-Power Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy. I. Experimental Investigation
,”
J. Power. Sources
,
196
(
12
), pp.
5334
5341
. 10.1016/j.jpowsour.2010.12.102
14.
Smith
,
B.
,
2013
, “
Chevrolet Volt Battery Incident-nhtsa Summary Report
,”
Accid. Reconstr. J.
,
23
(
5
), pp.
31
37
.
15.
Williard
,
N.
,
He
,
W.
,
Hendricks
,
C.
, and
Pecht
,
M.
,
2013
, “
Lessons Learned From the 787 Dreamliner Issue on Lithium-Ion Battery Reliability
,”
Energies
,
6
(
9
), pp.
4682
4695
. 10.3390/en6094682
16.
Feng
,
X.
,
Sun
,
J.
,
Ouyang
,
M.
,
Wang
,
F.
,
He
,
X.
,
Lu
,
L.
, and
Peng
,
H.
,
2015
, “
Characterization of Penetration Induced Thermal Runaway Propagation Process Within a Large Format Lithium Ion Battery Module
,”
J. Power. Sources
,
275
, pp.
261
273
. 10.1016/j.jpowsour.2014.11.017
17.
Kermani
,
G.
, and
Sahraei
,
E.
,
2017
, “
Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries
,”
Energies
,
10
(
11
), p.
1730
. 10.3390/en10111730
18.
Sahraei
,
E.
,
Kahn
,
M.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2015
, “
Modelling of Cracks Developed in Lithium-Ion Cells Under Mechanical Loading
,”
RSC. Adv.
,
5
(
98
), pp.
80369
80380
. 10.1039/C5RA17865G
19.
Sahraei
,
E.
,
Bosco
,
E.
,
Dixon
,
B.
, and
Lai
,
B.
,
2016
, “
Microscale Failure Mechanisms Leading to Internal Short Circuit in Li-Ion Batteries Under Complex Loading Scenarios
,”
J. Power. Sources
,
319
, pp.
56
65
. 10.1016/j.jpowsour.2016.04.005
20.
Mikolajczak
,
C.
,
Kahn
,
M.
,
White
,
K.
, and
Long
,
R. T.
,
2012
,
Lithium-Ion Batteries Hazard and Use Assessment
,
Springer Science & Business Media
,
New York
.
21.
Macdonald
,
J.
, and
Barsoukov
,
E.
,
2005
,
Impedance Spectroscopy: Theory, Experiment, and Applications
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
22.
Pastor-Fernández
,
C.
,
Uddin
,
K.
,
Chouchelamane
,
G. H.
,
Widanage
,
W. D.
, and
Marco
,
J.
,
2017
, “
A Comparison Between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-Ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes Within Battery Management Systems
,”
J. Power. Sources
,
360
, pp.
301
318
. 10.1016/j.jpowsour.2017.03.042
You do not currently have access to this content.