Abstract

This work discusses a crowdsourced learning scheme for robot physical intelligence. Using a large amount of data from crowdsourced mentors, the scheme allows robots to synthesize new physical skills that are never demonstrated or only partially demonstrated without heavy re-training. The learning scheme features a data management method to sustainably manage continuously collected data and a growing knowledge library. The method is validated using a simulated challenge of solving a bottle puzzle. The learning scheme aims at realizing ubiquitous robot learning of physical skills and has the potential of automating many demanding tasks that are currently hard to robotize.

References

References
1.
Seok
,
S.
,
Wang
,
A.
,
Chuah
,
M. Y. M.
,
Hyun
,
D. J.
,
Lee
,
J.
,
Otten
,
D. M.
,
Lang
,
J. H.
, and
Kim
,
S.
,
2015
, “
Design Principles for Energy-Efficient Legged Locomotion and Implementation on the Mit Cheetah Robot
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1117
1129
. 10.1109/TMECH.2014.2339013
2.
Senoo
,
T.
,
Namiki
,
A.
, and
Ishikawa
,
M.
,
2004
, “
High-Speed Batting Using a Multi-Jointed Manipulator
,”
IEEE International Conference on Robotics and Automation
,
New Orleans, LA
, Vol.
2
, pp.
1191
1196
.
3.
Argall
,
B. D.
,
Chernova
,
S.
,
Veloso
,
M.
, and
Browning
,
B.
,
2009
, “
A Survey of Robot Learning From Demonstration
,”
Robot. Auton. Syst.
,
57
(
5
), pp.
469
483
. 10.1016/j.robot.2008.10.024
4.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
5.
Huang
,
S. H.
,
Pan
,
J.
,
Mulcaire
,
G.
, and
Abbeel
,
P.
,
2015
, “
Leveraging Appearance Priors in Non-Rigid Registration, with Application to Manipulation of Deformable Objects
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
, pp.
878
885
.
6.
Levine
,
S.
,
Wagener
,
N.
, and
Abbeel
,
P.
,
2015
, “
Learning Contact-Rich Manipulation Skills with Guided Policy Search
,”
IEEE International Conference on Robotics and Automation
,
Seattle, WA
, pp.
156
163
.
7.
Fu
,
J.
,
Levine
,
S.
, and
Abbeel
,
P.
,
2016
, “
One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
, pp.
4019
4026
.
8.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
,
Graves
,
A.
,
Riedmiller
,
M.
,
Fidjeland
,
A. K.
,
Ostrovski
,
G.
, and
Petersen
,
S.
,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), p.
529
. 10.1038/nature14236
9.
Mnih
,
V.
,
Badia
,
A. P.
,
Mirza
,
M.
,
Graves
,
A.
,
Lillicrap
,
T.
,
Harley
,
T.
,
Silver
,
D.
, and
Kavukcuoglu
,
K.
,
2016
, “
Asynchronous Methods for Deep Reinforcement Learning
,”
International Conference on Machine Learning
,
New York, NY
, pp.
1928
1937
.
10.
Knight
,
W.
,
2018
, “
An AI-Driven Robot Hand Spent a Hundred Years Teaching Itself to Rotate a Cube
,” https://www.technologyreview.com/s/611724
11.
Howe
,
J.
,
2009
,
Crowdsourcing: Why the Power of the Crowd is Driving the Future of Business
,
Crown Business
,
New York
.
12.
von Ahn
,
L.
,
2005
, “
Human Computation
,”
Doctoral Dissertation
,
Carnegie Mellon University
,
Pittsburgh, PA
.
13.
Quinn
,
A. J.
, and
Bederson
,
B. B.
,
2011
, “
Human Computation: A Survey and Taxonomy of a Growing Field
,”
The SIGCHI Conference on Human Factors in Computing Systems
,
Vancouver, BC, Canada
, ACM, pp.
1403
1412
.
14.
Doan
,
A.
,
Ramakrishnan
,
R.
, and
Halevy
,
A. Y.
,
2011
, “
Crowdsourcing Systems on the World-Wide Web
,”
Communi. ACM
,
54
(
4
), pp.
86
96
. 10.1145/1924421.1924442
15.
Geiger
,
D.
,
Seedorf
,
S.
,
Schulze
,
T.
,
Nickerson
,
R. C.
, and
Schader
,
M.
,
2011
, “
Managing the Crowd: Towards a Taxonomy of Crowdsourcing Processes
,”
Americas Conference on Information Systems
,
Detroit, MI
.
16.
Little
,
G.
,
Chilton
,
L. B.
,
Goldman
,
M.
, and
Miller
,
R. C.
,
2010
, “
Turkit: Human Computation Algorithms on Mechanical Turk
,”
The 23rd Annual ACM Symposium on User Interface Software and Technology
,
New York
, pp.
57
66
.
17.
Lipton
,
J. I.
,
Fay
,
A. J.
, and
Rus
,
D.
,
2018
, “
Baxter’s Homunculus: Virtual Reality Spaces for Teleoperation in Manufacturing
,”
IEEE Robot. Autom. Lett.
,
3
(
1
), pp.
179
186
. 10.1109/LRA.2017.2737046
18.
Wolff
,
B.
,
Oct., 2017
, “
Why Human-Controlled, Force-Multiplying Robots Are the Future of Work on Earth
,”
IEEE Spectrum
.
19.
Sorokin
,
A.
,
Berenson
,
D.
,
Srinivasa
,
S. S.
, and
Hebert
,
M.
,
2010
, “
People Helping Robots Helping People: Crowdsourcing for Grasping Novel Objects
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
, pp.
2117
2122
.
20.
Forbes
,
M.
,
Chung
,
M.
,
Cakmak
,
M.
, and
Rao
,
R. P. N.
,
2014
, “
Robot Programming by Demonstration with Crowdsourced Action Fixes
,”
The 2nd AAAI Conference on Human Computation and Crowdsourcing
,
Pittsburgh, PA
.
21.
Sung
,
J.
,
Jin
,
S. H.
, and
Saxena
,
A.
,
2018
, “Robobarista: Object Part Based Transfer of Manipulation Trajectories From Crowd-Sourcing in 3D Pointclouds,”
Robotics Research. Springer Proceedings in Advanced Robotics
, Vol.
3
,
A.
Bicchi
, and
W.
Burgard
, eds.,
Springer
,
Cham, Switzerland
, pp.
701
720
.
22.
Chung
,
M. J. Y.
,
Forbes
,
M.
,
Cakmak
,
M.
, and
Rao
,
R. P. N.
,
2014
, “
Accelerating Imitation Learning Through Crowdsourcing
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
, pp.
4777
4784
.
23.
Zhao
,
L.
,
Lawhorn
,
R.
,
Wang
,
C.
,
Lu
,
L.
, and
Ouyang
,
B.
,
2019
, “
Synthesis of Robot Hand Skills Powered by Crowdsourced Learning
,”
IEEE International Conference on Mechatronics
,
Ilmenau, Germany
, pp.
211
216
.
24.
Bentley
,
J. L.
,
1975
, “
Multidimensional Binary Search Trees Used for Associative Searching
,”
Commun. ACM
,
18
(
9
), pp.
509
517
. 10.1145/361002.361007
25.
Malkov
,
Y. A.
, and
Yashunin
,
D. A.
,
2020
, “
Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs
,”
IEEE Trans. Pattern Anal. Mach. Intel.
,
42
(
4
), pp.
824
836
. 10.1109/tpami.2018.2889473
26.
Gionis
,
A.
,
Indyk
,
P.
, and
Motwani
,
R.
,
1999
, “
Similarity Search in High Dimensions Via Hashing
,”
The 25th International Conference on Very Large Data Bases
,
Edinburgh, Scotland, UK
, pp.
518
529
.
27.
Jegou
,
H.
,
Douze
,
M.
, and
Schmid
,
C.
,
2011
, “
Product Quantization for Nearest Neighbor Search
,”
IEEE Trans. Pattern Anal. Mach. Intel.
,
33
(
1
), pp.
117
128
. 10.1109/TPAMI.2010.57
29.
Fu
,
C.
,
Xiang
,
C.
,
Wang
,
C.
, and
Cai
,
D.
,
2019
, “
Fast Approximate Nearest Neighbor Search With the Navigating Spreading-Out Graph
,”
Proc. VLDB Endowment
,
12
(
5
), pp.
461
474
. 10.14778/3303753.3303754
You do not currently have access to this content.