Abstract

This paper presents a method to imitate flatness-based controllers for mobile robots using neural networks. Sample case studies for a unicycle mobile robot and an unmanned aerial vehicle (UAV) quadcopter are presented. The goals of this paper are to (1) train a neural network to approximate a previously designed flatness-based controller, which takes in the desired trajectories previously planned in the flatness space and robot states in a general state space, and (2) present a dynamic training approach to learn models with high-dimensional inputs. It is shown that a simple feedforward neural network could adequately compute the highly nonlinear state variables transformation from general state space to flatness space and replace the complicated designed heuristic to avoid singularities in the control law. This paper also presents a new dynamic training method for models with high-dimensional independent inputs, serving as a reference for learning models with a multitude of inputs. Training procedures and simulations are presented to show both the effectiveness of this novel training approach and the performance of the well-trained neural network.

References

1.
Sira-Ramírez
,
H.
, and
Agrawal
,
S.
,
2004
,
Differentially Flat Systems
, Vol.
5
,
CRC Press
,
Boca Raton, FL
.
2.
Francisco
,
S.
,
Murray
,
R. M.
,
Rathinam
,
M.
, and
Sluis
,
W.
,
1995
, “
Differential Flatness of Mechanical Control Systems: A Catalog of Prototype Systems
,”
Proceedings of the 1995 ASME International Congress and Exposition
,
San Francisco, CA
,
Nov. 12–17
, ASME.
3.
Soheil-Hamedani
,
M.
,
Zandi
,
M.
,
Gavagsaz-Ghoachani
,
R.
,
Nahid-Mobarakeh
,
B.
, and
Pierfederici
,
S.
,
2016
, “
Flatness-Based Control Method: A Review of Its Applications to Power Systems
,”
2016 7th Power Electronics and Drive Systems Technologies Conference (PEDSTC)
,
Tehran, Iran
,
Feb. 16–18
,
IEEE
, pp.
547
552
.
4.
Tang
,
C. P.
,
2009
, “
Differential Flatness-Based Kinematic and Dynamic Control of a Differentially Driven Wheeled Mobile Robot
,”
2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Guilin, China
,
Dec. 19–23
,
IEEE
, pp.
2267
2272
.
5.
De Luca
,
A.
,
Oriolo
,
G.
, and
Samson
,
C.
,
1998
, “Feedback Control of a Nonholonomic Car-Like Robot,”
Robot Motion Planning and Control
,
Springer-Verlag
,
Berlin
, pp.
171
253
.
6.
Poultney
,
A.
,
Kennedy
,
C.
,
Clayton
,
G.
, and
Ashrafiuon
,
H.
,
2018
, “
Robust Tracking Control of Quadrotors Based on Differential Flatness: Simulations and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
23
(
3
), pp.
1126
1137
. 10.1109/TMECH.2018.2820426
7.
Cowling
,
I. D.
,
Yakimenko
,
O. A.
,
Whidborne
,
J. F.
, and
Cooke
,
A. K.
,
2007
, “
A Prototype of An Autonomous Controller for a Quadrotor UAV
,”
2007 European Control Conference (ECC)
,
Kos, Greece
,
July 2–5
,
IEEE
, pp.
4001
4008
.
8.
Agrawal
,
S.
, and
Sangwan
,
V.
,
2008
, “
Differentially Flat Designs of Underactuated Open-Chain Planar Robots
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1445
1451
. 10.1109/TRO.2008.2006243
9.
Ren
,
H.
,
Kumar
,
A.
,
Wang
,
X.
, and
Ben-Tzvi
,
P.
,
2018
, “
Parallel Deep Learning Ensembles for Human Pose Estimation
,”
Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30–Oct. 3
,
ASME
, p.
V001T07A005
.
10.
Young
,
T.
,
Hazarika
,
D.
,
Poria
,
S.
, and
Cambria
,
E.
,
2018
, “
Recent Trends in Deep Learning Based Natural Language Processing [Review Article]
,”
IEEE Comput. Intell. Mag.
,
13
(
3
), pp.
55
75
. 10.1109/MCI.2018.2840738
11.
Riedmiller
,
M.
,
Hafner
,
R.
,
Lampe
,
T.
,
Neunert
,
M.
,
Degrave
,
J.
,
Van de Wiele
,
T.
,
Mnih
,
V.
,
Heess
,
N.
, and
Springenberg
,
J. T.
,
2018
, “
Learning by Playing - Solving Sparse Reward Tasks From Scratch
,”
Proceedings of Machine Learning Research
,
Stockholmsmässan, Stockholm, Sweden
,
July 10–15
,
PMLR
, pp.
4344
4353
.
12.
Toshani
,
H.
, and
Farrokhi
,
M.
,
2014
, “
Real-Time Inverse Kinematics of Redundant Manipulators Using Neural Networks and Quadratic Programming: A Lyapunov-based Approach
,”
Rob. Autonomous Syst.
,
62
(
6
), pp.
766
781
. 10.1016/j.robot.2014.02.005
13.
Pane
,
Y. P.
,
Nageshrao
,
S. P.
,
Kober
,
J.
, and
Babuška
,
R.
,
2019
, “
Reinforcement Learning Based Compensation Methods for Robot Manipulators
,”
Eng. Appl. Artif. Intell.
,
78
(
2
), pp.
236
247
. 10.1016/j.engappai.2018.11.006
14.
Ratliff
,
N.
,
Meier
,
F.
,
Kappler
,
D.
, and
Schaal
,
S.
,
2016
, “
DOOMED: Direct Online Optimization of Modeling Errors in Dynamics
,”
Big Data
,
4
(
4
), pp.
253
268
. 10.1089/big.2016.0041
15.
Thuruthel
,
T. G.
,
Falotico
,
E.
,
Renda
,
F.
, and
Laschi
,
C.
,
2019
, “
Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators
,”
IEEE Trans. Rob.
,
35
(
1
), pp.
124
134
. 10.1109/TRO.2018.2878318
16.
Faessler
,
M.
,
Franchi
,
A.
, and
Scaramuzza
,
D.
,
2018
, “
Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
620
626
. 10.1109/LRA.2017.2776353
17.
Watkins
,
C. J. C. H.
,
1989
, “
Learning From Delayed Rewards
,”
Ph.D. thesis
,
King’s College
,
Cambridge, UK
.
18.
Reitermanová
,
Z.
, “
Data Splitting
,”
WDS’s 10 Proceedings of Contributed Papers
, pp.
31
36
.
19.
Chollet
,
F.
, et al
,
2015
, “
Keras
.”
20.
Abadi
,
M.
,
Agarwal
,
A.
,
Barham
,
P.
,
Brevdo
,
E.
,
Chen
,
Z.
,
Citro
,
C.
,
Corrado
,
G. S.
,
Davis
,
A.
,
Dean
,
J.
,
Devin
,
M.
,
Ghemawat
,
S.
,
Goodfellow
,
I.
,
Harp
,
A.
,
Irving
,
G.
,
Isard
,
M.
,
Jia
,
Y.
,
Jozefowicz
,
R.
,
Kaiser
,
L.
,
Kudlur
,
M.
,
Levenberg
,
J.
,
Mané
,
D.
,
Monga
,
R.
,
Moore
,
S.
,
Murray
,
D.
,
Olah
,
C.
,
Schuster
,
M.
,
Shlens
,
J.
,
Steiner
,
B.
,
Sutskever
,
I.
,
Talwar
,
K.
,
Tucker
,
P.
,
Vanhoucke
,
V.
,
Vasudevan
,
V.
,
Viégas
,
F.
,
Vinyals
,
O.
,
Warden
,
P.
,
Wattenberg
,
M.
,
Wicke
,
M.
,
Yu
,
Y.
and
Zheng
,
X.
,
2015
, “
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
,” tensorflow.org
21.
Bergstra
,
J.
,
Yamins
,
D.
, and
Cox
,
D. D.
,
2013
, “
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
,”
30th International Conference on International Conference on Machine Learning
, Vol.
28
, pp.
I–115
I–123
.
22.
Maas
,
A. L.
,
Hannun
,
A. Y.
, and
Ng
,
A. Y.
,
2013
, “
Rectifier Nonlinearities Improve Neural Network Acoustic Models
,”
30th International Conference on Machine Learning
,
June 16–21, Atlanta, GA
,
ICML
.
23.
MathWorks
.
Simulink - Simulation and Model-Based Design - MATLAB
.
You do not currently have access to this content.