Abstract

Microscale swimming robots have been envisaged for many biomedical applications such as targeted drug delivery, where the microrobot will be expected to navigate in a fluid environment while carrying a payload. We show that such a payload does not have to be physically bound to the swimmer, but may be instead manipulated by the microrobot through hydrodynamic interaction. We consider a magnetically actuated artificial microswimmer, whose locomotion induces a disturbance velocity field in the fluid, which moves a cargo particle in its vicinity. The problem investigated in this paper is therefore one of coupled locomotion-manipulation of two bodies in a fluid. The swimmer is actuated by a uniform, rotating magnetic field of constant strength leading to net motion in the direction perpendicular to the plane of rotation if the frequency associated with the periodic magnetic field is above a critical frequency. Below this critical frequency, the swimmer tumbles in place without net locomotion. Controlled motion of the particle and swimmer is achieved by switching the planes of rotation of the magnetic field and the frequency of the magnetic field above and below the critical frequency. The results of this paper show that microswimmers can be utilized as mobile manipulators of microparticles in a fluid.

References

1.
Nelson
,
B. J.
,
Kaliakatsos
,
I. K.
, and
Abbott
,
J. J.
,
2010
, “
Microrobots for Minimally Invasive Medicine
,”
Annu. Rev. Biomed. Eng.
,
12
(
1
), pp.
55
85
. 10.1146/annurev-bioeng-010510-103409
2.
Patra
,
D.
,
Sengupta
,
S.
,
Duan
,
W.
,
Zhang
,
H.
,
Pavlick
,
R.
, and
Sen
,
A.
,
2013
, “
Intelligent, Self-Powered, Drug Delivery Systems
,”
Nanoscale
,
5
(
4
), pp.
1273
1283
. 10.1039/C2NR32600K
3.
Hunter
,
E.
,
Brink
,
E.
,
Steager
,
E.
, and
Kumar
,
V.
,
2018
, “
Toward Soft Micro Bio Robots for Cellular and Chemical Delivery
,”
IEEE Rob. Automat. Lett.
,
3
(
3
), pp.
1592
1599
. 10.1109/LRA.2018.2800118
4.
Zhang
,
L.
,
Abbott
,
J. J.
,
Dong
,
L.
,
Kratochvil
,
B. E.
,
Bell
,
D.
, and
Nelson
,
B. J.
,
2009
, “
Artificial Bacterial Flagella: Fabrication and Magnetic Control
,”
Appl. Phys. Lett.
,
94
, p.
064107
. 10.1063/1.3079655
5.
Cheang
,
U. K.
,
Meshkati
,
F.
,
Kim
,
D.
,
Kim
,
M. J.
, and
Fu
,
H. C.
,
2014
, “
Minimal Geometric Requirements for Micropropulsion Via Magnetic Rotation
,”
Phys. Rev. E
,
90
, p.
033007
. 10.1103/PhysRevE.90.033007
6.
Chautems
,
C.
,
Zeydan
,
B.
,
Charreyron
,
S.
,
Chatzipirpiridis
,
G.
,
Pané
,
S.
, and
Nelson
,
B. J.
,
2017
, “
Magnetically Powered Microrobots: A Medical Revolution Underway?
Eur. J. Cardio-Thorac.
,
55
(
3
), pp.
405
407
. 10.1093/ejcts/ezw432
7.
Loget
,
G.
, and
Kuhn
,
A.
,
2011
, “
Electric Field-Induced Chemical Locomotion of Conducting Objects
,”
Nat. Mater.
,
2
, p.
535
. https://doi.org/10.1038/ncomms1550
8.
Ahmed
,
D.
,
Lu
,
M.
,
Nourhani
,
A.
,
Lammert
,
P. E.
,
Stratton
,
Z.
,
Muddana
,
H. S.
,
Crespi
,
V. H.
, and
Huang
,
T. J.
,
2015
, “
Selectively Manipulable Acoustic-Powered Microswimmers
,”
Sci. Rep.
,
5
(
1
), p.
9744
. 10.1038/srep09744
9.
Camacho-Lopez
,
M.
,
Finkelmann
,
H.
,
Palffy-Muhoray
,
P.
, and
Shelley
,
M.
,
2004
, “
Fast Liquid-Crystal Elastomer Swims Into the Dark
,”
Nat. Mater.
,
3
(
5
), pp.
307
310
. 10.1038/nmat1118
10.
Mirkovic
,
T.
,
Zacharia
,
N. S.
,
Scholes
,
G. D.
, and
Ozin
,
G. A.
,
2010
, “
Fuel for Thought: Chemically Powered Nanomotors Out-Swim Nature’s Flagellated Bacteria
,”
ACS Nano
,
4
(
4
), pp.
1782
1789
. 10.1021/nn100669h
11.
Solovev
,
A.
,
Xi
,
W.
,
Gracias
,
D. H.
,
Harazim
,
S. M.
,
Deneke
,
C.
,
Sanchez
,
S.
, and
Schmidt
,
O. G.
,
2012
, “
Self-Propelled Nanotools
,”
ACS Nano
,
6
(
2
), pp.
1751
1756
. 10.1021/nn204762w
12.
Happel
,
J.
, and
Brenner
,
H.
,
1983
,
Low Reynolds Number Hydrodynamics
,
Springer
,
New York
.
13.
Kim
,
S.
, and
Karrila
,
S. J.
,
2005
,
Microhydrodynamics: Principles and Selected Applications
,
Dover Publications
,
Mineola, NY
.
14.
Meshkati
,
F.
, and
Fu
,
H.
,
2014
, “
Modeling Rigid Magnetically Rotated Microswimmers: Rotation Axes, Bistability, and Controllability
,”
Phys. Rev. E
,
90
(
6
), p.
063006
. 10.1103/PhysRevE.90.063006
15.
Morozov
,
K. I.
,
Mirzae
,
Y.
,
Kenneth
,
O.
, and
Leshansky
,
A. M.
,
2017
, “
Dynamics of Arbitrary Shaped Propellers Driven by a Rotating Magnetic Field
,”
Phys. Rev. Fluids
,
2
(
4
), p.
044202
. 10.1103/PhysRevFluids.2.044202
16.
Buzhardt
,
J.
, and
Tallapragada
,
P.
,
2020
, “
Optimal Trajectory Tracking for a Magnetically Driven Microswimmer
,”
Proceedings of the American Control Conference, Denver, CO, July 1–3.
17.
Brady
,
J. F.
, and
Bossis
,
G.
,
1988
, “
Stokesian Dynamics
,”
Annu. Rev. Fluid Mech.
,
20
(
1
), pp.
111
157
. 10.1146/annurev.fl.20.010188.000551
18.
Durlofsky
,
L.
,
Brady
,
J. F.
, and
Bossis
,
G.
,
1987
, “
Dynamic Simulation of Hydrodynamically Interacting Particles
,”
J. Fluid Mech.
,
180
(
1
), pp.
21
49
. 10.1017/S002211208700171X
19.
Swan
,
J. W.
,
Brady
,
J. F.
, and
Moore
,
R. S.
,
ChE 174
,
2011
, “
Modeling Hydrodynamic Self-Propulsion With Stokesian Dynamics. Or Teaching Stokesian Dynamics to Swim
,”
Phys. Fluids
,
23
(
7
), p.
071901
. 10.1063/1.3594790
20.
Buzhardt
,
J.
, and
Tallapragada
,
P.
,
2019
, “
Dynamics of Groups of Magnetically Driven Artificial Microswimmers
,”
Phys. Rev. E
,
100
, p.
033106
. 10.1103/PhysRevE.100.033106
21.
Goldstein
,
H.
,
1980
,
Classical Mechanics
,
Addison-Wesley
,
Boston, MA
.
22.
Ghosh
,
A.
,
Paria
,
D.
,
Singh
,
H. J.
,
Venugopalan
,
P. L.
, and
Ghosh
,
A.
,
2012
, “
Dynamical Configurations and Bistability of Helical Nanostructures Under External Torque
,”
Phys. Rev. E
,
86
, p.
031401
. 10.1103/PhysRevE.86.031401
23.
Zhang
,
L.
,
Petit
,
T.
,
Lu
,
Y.
,
Kratochvil
,
B. E.
,
Peyer
,
K. E.
,
Pei
,
R.
,
Lou
,
J.
, and
Nelson
,
B. J.
,
2010
, “
Controlled Propulsion and Cargo Transport of Rotating Nickel Nanowires Near a Patterned Solid Surface
,”
ACS Nano
,
4
(
10
), pp.
6228
6234
. 10.1021/nn101861n
24.
Man
,
Y.
, and
Lauga
,
E.
,
2013
, “
The Wobbling-to-Swimming Transition of Rotated Helices
,”
Phys. Fluids
,
25
(
7
), p.
071904
. 10.1063/1.4812637
25.
Or
,
Y.
,
Zhang
,
S.
, and
Murray
,
R.
,
2011
, “
Dynamics and Stability of Low-Reynolds-Number Swimming Near a Wall
,”
SIAM J. Appl. Dyn. Syst.
,
10
(
3
), pp.
1013
1041
. 10.1137/100808745
26.
Buzhardt
,
J.
,
Fedonyuk
,
V.
,
Sudarsanam
,
S.
, and
Tallapragada
,
P.
,
2018
, “
Controllability of a Pair of Swimming Microrotors in a Bounded Domain at Low Reynolds Number
,”
Proceedings of the ASME 2018 Dynamic Systems and Control Conference, Sept. 30–Oct. 3, Atlanta, GA.
27.
Buzhardt
,
J.
,
Fedonyuk
,
V.
, and
Tallapragada
,
P.
,
2018
, “
Pairwise Controllability and Motion Primitives for Micro-Rotors in a Bounded Stokes Flow
,”
Int. J. Intell. Robot. Appl.
,
2
(
4
), pp.
454
461
. 10.1007/s41315-018-0075-5
You do not currently have access to this content.