Abstract

In this article, a compressive sensing-based reconstruction algorithm is applied to data acquired from a nodding multibeam Lidar system following a Lissajous-like trajectory. Multibeam Lidar systems provide 3D depth information of the environment, but the vertical resolution of these devices may be insufficient in many applications. To mitigate this issue, the Lidar can be nodded to obtain higher vertical resolution at the cost of increased scan time. Using Lissajous-like nodding trajectories allows for the trade-off between scan time and horizontal and vertical resolutions through the choice of scan parameters. These patterns also naturally subsample the imaged area. In this article, a compressive sensing-based reconstruction algorithm is applied to the data collected during a relatively fast and therefore low-resolution Lissajous-like scan. Experiments and simulations show the feasibility of this method and compare the reconstructions to those made using simple nearest-neighbor interpolation.

References

References
1.
Fraundorfer
,
F.
, and
Scaramuzza
,
D.
,
2012
, “
Visual Odometry: Part II: Matching, Robustness, Optimization, and Applications
,”
Rob. Automat. Mag., IEEE
,
19
(
2
), pp.
78
90
. 10.1109/MRA.2012.2182810
2.
Kohlbrecher
,
S.
,
Von Stryk
,
O.
,
Meyer
,
J.
, and
Klingauf
,
U.
,
2011
, “
A Flexible and Scalable Slam System With Full 3d Motion Estimation
,”
2011 IEEE International Symposium on Safety, Security, and Rescue Robotics
,
Kyoto, Japan
,
Nov. 1
,
IEEE
, pp.
155
160
.
3.
Geller
,
D.
,
2007
, “
Orbital Rendezvous: When Is Autonomy Required?
,”
J. Guid. Control Dyn.
,
30
(
4
), pp.
974
981
. 10.2514/1.27052
4.
Desai
,
A.
, and
Huber
,
D.
,
2009
, “
Objective Evaluation of Scanning Ladar Configurations for Mobile Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10
,
IEEE
, pp.
2182
2189
.
5.
Benson
,
M.
,
Nikolaidis
,
J.
, and
Clayton
,
G. M.
,
2018
, “
Lissajous-Like Scan Pattern for a Nodding Multi-Beam Lidar
,”
ASME 2018 Dynamic Systems and Control Conference
,
Atlanta, GA
,
Sept. 30
,
American Society of Mechanical Engineers
, p.
V002T24A007
.
6.
Luo
,
Y.
, and
Andersson
,
S. B.
,
2019
, “
A Continuous Sampling Pattern Design Algorithm for Atomic Force Microscopy Images
,”
Ultramicroscopy
,
196
, pp.
167
179
. 10.1016/j.ultramic.2018.10.013
7.
Ma
,
F.
,
Carlone
,
L.
,
Ayaz
,
U.
, and
Karaman
,
S.
,
2016
, “
Sparse Sensing for Resource-Constrained Depth Reconstruction
,”
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, Korea
,
Oct. 9
,
IEEE
, pp.
96
103
.
8.
Sampath
,
A.
, and
Shan
,
J.
,
2009
, “
Segmentation and Reconstruction of Polyhedral Building Roofs From Aerial Lidar Point Clouds
,”
IEEE Trans. Geosci. Remote Sens.
,
48
(
3
), pp.
1554
1567
. 10.1109/TGRS.2009.2030180
9.
Candès
,
E. J.
,
2006
, “
Compressive Sampling
,”
International Congress of Mathematicians
,
Madrid, Spain
,
Aug. 22
, pp.
1433
1452
.
10.
Candès
,
E. J.
, and
Romberg
,
J.
,
2007
, “
Sparsity and Incoherence in Compressive Sampling
,”
Inverse Prob.
,
23
(
3
), pp.
969
985
. 10.1088/0266-5611/23/3/008
11.
Braker
,
R. A.
,
Luo
,
Y.
,
Pao
,
L. Y.
, and
Andersson
,
S. B.
,
2018
, “
Hardware Demonstration of Atomic Force Microscopy Imaging Via Compressive Sensing and μ-Path Scans
,”
American Control Conference (ACC)
,
Milwaukee, WI
,
June 27
, pp.
6037
6042
.
12.
Ma
,
F.
,
Cavalheiro
,
G. V.
, and
Karaman
,
S.
,
2019
, “
Self-Supervised Sparse-to-Dense: Self-Supervised Depth Completion From LiDAR and Monocular Camera
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20
, pp.
3288
3295
.
13.
Baraniuk
,
R.
,
Davenport
,
M.
,
DeVore
,
R.
, and
Wakin
,
M.
,
2008
, “
A Simple Proof of the Restricted Isometry Property for Random Matrices
,”
Construct. Approximation
,
28
(
3
), pp.
253
263
. 10.1007/s00365-007-9003-x
You do not currently have access to this content.