Abstract

In this paper, we established an analytical model that avoids extensive numerical computation for the analysis of a hydraulically amplified dielectric elastomer actuator. This actuator comprises a thin elastomer shell filled with an incompressible dielectric fluid coupled with a pair of electrodes placed in the central area. Application of high voltage on the electrodes inflates the actuator due to the induced Maxwell stress that pressurizes the incompressible dielectric fluid. The lumped parameter model predicts the stable functional region and the snap-through instability in the actuator. The model was compared with multi-physics finite element models that considered both linear elastic and nonlinear Mooney–Rivlin materials. The proposed model showed good agreement in the estimation of the actuation strain and the hydrostatic pressure as a function of voltage when compared to the finite element results. The average error in the axial and radial actuation using the proposed analytical model and nonlinear finite element method models was 1.62% and 3.42%, respectively. This shows the model strength in the estimation of the actuator states and the critical voltage to avoid snap-through instability, required in applications such as control algorithms.

References

References
1.
Majidi
,
C.
,
2014
, “
Soft Robotics: A Perspective–Current Trends and Prospects for the Future
,”
Soft Robotics
,
1
(
1
), pp.
5
11
. 10.1089/soro.2013.0001
2.
Acome
,
E.
,
Mitchell
,
S.
,
Morrissey
,
T.
,
Emmett
,
M.
,
Benjamin
,
C.
,
King
,
M.
,
Radakovitz
,
M.
, and
Keplinger
,
C.
,
2018
, “
Hydraulically Amplified Self-Healing Electrostatic Actuators With Muscle-Like Performance
,”
Science
,
359
(
6371
), pp.
61
65
. 10.1126/science.aao6139
3.
Kang
,
R.
,
Branson
,
D. T.
,
Zheng
,
T.
,
Guglielmino
,
E.
, and
Caldwell
,
D. G.
,
2013
, “
Design, Modeling and Control of a Pneumatically Actuated Manipulator Inspired by Biological Continuum Structures
,”
Bioinspiration Biomimetics
,
8
(
3
), p.
036008
. 10.1088/1748-3182/8/3/036008
4.
Gorissen
,
B.
,
Chishiro
,
T.
,
Shimomura
,
S.
,
Reynaerts
,
D.
,
De Volder
,
M.
, and
Konishi
,
S.
,
2014
, “
Flexible Pneumatic Twisting Actuators and Their Application to Tilting Micromirrors
,”
Sens. Actuators, A
,
216
, pp.
426
431
. 10.1016/j.sna.2014.01.015
5.
Polygerinos
,
P.
,
Wang
,
Z.
,
Galloway
,
K. C.
,
Wood
,
R. J.
, and
Walsh
,
C. J.
,
2015
, “
Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation
,”
Robotics Autonomous Syst.
,
73
, pp.
135
143
. 10.1016/j.robot.2014.08.014
6.
Mochiyama
,
H.
, and
Suzuki
,
T.
,
2003
, “
Kinematics and Dynamics of a Cable-Like Hyper-Flexible Manipulator
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422)
,
Taipei, Taiwan
,
2003
.
7.
Katzschmann
,
R. K.
,
Marchese
,
A. D.
, and
Rus
,
D.
,
2016
,
Experimental Robotics
,
Springer
,
Berlin, Germany
, pp.
405
420
.
8.
Landau
,
L.
, and
Lifshitz
,
E.
,
1984
,
Electrodynamics of Continuous Media
, Vol.
8
,
Pergamon Press
,
New York
.
9.
Chen
,
L.
,
Chen
,
W.
,
Xue
,
Y.
,
Zhang
,
M.
,
Chen
,
X.
,
Cao
,
X.
,
Zhang
,
Z.
,
Li
,
G.
, and
Li
,
T.
,
2019
, “
Investigation of the State Transition and Moving Boundary in a Pneumatic–Hydraulic Coupled Dielectric Elastomer Actuator
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031004
. 10.1115/1.4042136
10.
Overvelde
,
J. T.
,
Kloek
,
T.
,
D’haen
,
J. J.
, and
Bertoldi
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-Through Instabilities
,”
Proc. Natl. Acad. Sci. USA
,
112
(
35
), pp.
10863
10868
. 10.1073/pnas.1504947112
11.
Kellaris
,
N.
,
Venkata
,
V. G.
,
Smith
,
G. M.
,
Mitchell
,
S. K.
, and
Keplinger
,
C.
,
2018
, “
Peano-HASEL Actuators: Muscle-Mimetic, Electrohydraulic Transducers That Linearly Contract on Activation
,”
Sci Robotics
,
3
(
14
), p.
eaar3276
. 10.1126/scirobotics.aar3276
12.
Zamanian
,
A. H.
,
Porter
,
D. A.
,
Krueger
,
P.
, and
Richer
,
E.
,
2018
, “
Multi-Physics Design and Modeling of 3D Printed Hydraulically Amplified Dielectric Elastomer Actuators with Large Actuation Strokes
,”
ASME 2018 Dynamic Systems and Control Conference
,
Atlanta
,
GA, Sept. 30–Oct. 3
.
13.
Alexander
,
H.
,
1971
, “
The Tensile Instability of an Inflated Cylindrical Membrane as Affected by an Axial Load
,”
Int. J. Mech. Sci.
,
13
(
2
), pp.
87
95
. 10.1016/0020-7403(71)90013-0
14.
Tamadapu
,
G.
, and
DasGupta
,
A.
,
2013
, “
Finite Inflation Analysis of a Hyperelastic Toroidal Membrane of Initially Circular Cross-Section
,”
Int. J. Non-Linear Mech.
,
49
, pp.
31
39
. 10.1016/j.ijnonlinmec.2012.09.008
15.
Chen
,
F.
, and
Wang
,
M. Y.
,
2015
, “
Dynamic Performance of a Dielectric Elastomer Balloon Actuator
,”
Meccanica
,
50
(
11
), pp.
2731
2739
. 10.1007/s11012-015-0206-0
16.
Wang
,
F.
,
Yuan
,
C.
,
Lu
,
T.
, and
Wang
,
T.
,
2017
, “
Anomalous Bulging Behaviors of a Dielectric Elastomer Balloon Under Internal Pressure and Electric Actuation
,”
J. Mech. Phys. Solids
,
102
, pp.
1
16
. 10.1016/j.jmps.2017.01.021
17.
Ugural
,
A. C.
,
2009
,
Stresses in Beams, Plates, and Shells
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
18.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Corporation
,
Mineola, NY
.
19.
Tschoegl
,
N. W.
,
1971
, “
Constitutive Equations for Elastomers
,”
J. Polym. Sci. Part A: Poly. Chem.
,
9
(
7
), pp.
1959
1970
. 10.1002/pol.1971.150090714
20.
Putra
,
K. B.
,
Plott
,
J.
, and
Shih
,
A. J.
,
2017
, “
Biaxial Mooney–Rivlin Coefficient of Silicone Sheet by Additive Manufacturing
,”
Proc. CIRP
,
65
, pp.
189
195
. 10.1016/j.procir.2017.04.049
You do not currently have access to this content.