Abstract

Although laser-based additive manufacturing (AM) has enabled unprecedented fabrication of complex parts directly from digital models, broader adoption of the technology remains challenged by insufficient reliability and in-process variations. In pursuit of assuring quality in the selective laser sintering (SLS) AM, this paper builds a modeling and control framework of the key thermodynamic interactions between the laser source and the materials to be processed. First, we develop a three-dimensional finite element simulation to understand the important features of the melt pool evolution for designing sensing and feedback algorithms. We explore how the temperature field is affected by hatch spacing and thermal properties that are temperature-dependent. Based on high-performance computer simulation and experimentation, we then validate the existence and effect of periodic disturbances induced by the repetitive in- and cross-layer thermomechanical interactions. From there, we identify the system model from the laser power to the melt pool width and build a repetitive control algorithm to greatly attenuate variations of the melt pool geometry.

References

References
1.
Wang
,
D.
, and
Chen
,
X.
,
2018
, “
A Multirate Fractional-Order Repetitive Control for Laser-Based Additive Manufacturing
,”
Control Eng. Pract.
,
77
, pp.
41
51
. 10.1016/j.conengprac.2018.05.001
2.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Proceedings of the 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
,
Sept. 24–29
, pp.
521
527
.
3.
Seyda
,
V.
,
Kaufmann
,
N.
, and
Emmelmann
,
C.
,
2012
, “
Investigation of Aging Processes of ti-6al-4 V Powder Material in Laser Melting
,”
Phys. Proc.
,
39
, pp.
425
431
. 10.1016/j.phpro.2012.10.057
4.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of ti-6al-4v Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118
, pp.
73
90
. 10.1016/j.ijmachtools.2017.04.007
5.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des. (1980–2015)
,
52
, pp.
638
647
. 10.1016/j.matdes.2013.05.070
6.
Foroozmehr
,
A.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
, and
Golabi
,
S.
,
2016
, “
Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,”
Mater. Des.
,
89
, pp.
255
263
. 10.1016/j.matdes.2015.10.002
7.
Song
,
L.
, and
Mazumder
,
J.
,
2011
, “
Feedback Control of Melt Pool Temperature During Laser Cladding Process
,”
IEEE Trans. Control Syst. Technol.
,
19
(
6
), pp.
1349
1356
. 10.1109/TCST.2010.2093901
8.
Cao
,
X.
, and
Ayalew
,
B.
,
2015
, “
Control-Oriented Mimo Modeling of Laser-Aided Powder Deposition Processes
,”
American Control Conference (ACC)
,
Chicago, IL
,
July 1–3
,
IEEE
, pp.
3637
3642
.
9.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2014
, “
Repetitive Process Control of Laser Metal Deposition
,”
ASME 2014 Dynamic Systems and Control Conference
,
American Society of Mechanical Engineers, ASME
, p.
V002T35A004
.
10.
Fathi
,
A.
,
Khajepour
,
A.
,
Durali
,
M.
, and
Toyserkani
,
E.
,
2008
, “
Geometry Control of the Deposited Layer in a Nonplanar Laser Cladding Process Using a Variable Structure Controller
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031003
. 10.1115/1.2823085
11.
Kannatey-Asibu
,
E.
, Jr.
,
2009
,
Principles of Laser Materials Processing
, Vol.
4
,
John Wiley & Sons
,
Hoboken, NJ
.
12.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
13.
Mirkoohi
,
E.
,
Ning
,
J.
,
Bocchini
,
P.
,
Fergani
,
O.
,
Chiang
,
K.-N.
, and
Liang
,
S.
,
2018
, “
Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties
,”
J. Manuf. Mater. Proc.
,
2
(
3
), p.
63
. 10.3390/jmmp2030063
14.
Li
,
J.
,
Wang
,
Q.
,
Michaleris
,
P. P.
,
Reutzel
,
E. W.
, and
Nassar
,
A. R.
,
2017
, “
An Extended Lumped-Parameter Model of Melt–Pool Geometry to Predict Part Height for Directed Energy Deposition
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091016
. 10.1115/1.4037235
15.
Hofman
,
J.
,
Pathiraj
,
B.
,
Van Dijk
,
J.
,
de Lange
,
D.
, and
Meijer
,
J.
,
2012
, “
A Camera Based Feedback Control Strategy for the Laser Cladding Process
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2455
2462
. 10.1016/j.jmatprotec.2012.06.027
16.
Salehi
,
D.
, and
Brandt
,
M.
,
2006
, “
Melt Pool Temperature Control Using Labview in Nd: Yag Laser Blown Powder Cladding Process
,”
Int. J. Adv. Manuf. Technol.
,
29
(
3
), pp.
273
278
. 10.1007/s00170-005-2514-3
17.
Fathi
,
A.
,
Khajepour
,
A.
,
Toyserkani
,
E.
, and
Durali
,
M.
,
2007
, “
Clad Height Control in Laser Solid Freeform Fabrication Using a Feedforward Pid Controller
,”
Int. J. Adv. Manuf. Technol.
,
35
(
3
), pp.
280
292
. 10.1007/s00170-006-0721-1
18.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021009
. 10.1115/1.4003691
19.
Inoue
,
T.
,
Nakano
,
M.
,
Kubo
,
T.
,
Matsumoto
,
S.
, and
Baba
,
H.
,
1981
, “
High Accuracy Control of a Proton Synchrotron Magnet Power Supply
,”
IFAC Proc. Vol.
,
14
(
2
), pp.
3137
3142
. 10.1016/S1474-6670(17)63938-7
20.
Chen
,
X.
, and
Tomizuka
,
M.
,
2014
, “
New Repetitive Control with Improved Steady-State Performance and Accelerated Transient
,”
IEEE Trans. Control Syst. Technol.
,
22
(
2
), pp.
664
675
. 10.1109/TCST.2013.2253102
21.
Arce
,
A. N.
,
2012
,
Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys
,
North Carolina State University
,
Raleigh, NC
.
22.
Dunbar
,
A. J.
,
Denlinger
,
E. R.
,
Gouge
,
M. F.
,
Simpson
,
T. W.
, and
Michaleris
,
P.
,
2017
, “
Comparisons of Laser Powder Bed Fusion Additive Manufacturing Builds Through Experimental in Situ Distortion and Temperature Measurements
,”
Addit. Manuf.
,
15
, pp.
57
65
. 10.1016/j.addma.2017.03.003
You do not currently have access to this content.