Shaft parts are important parts used in almost all machines including automobiles. In addition, extremely high reliability is required since a shaft failure is directly linked to a fatal machine trouble. Therefore, a hardening process is usually conducted to improve strength and wear resistance. In this study, we propose a new laser heat treatment method to produce high-quality and high-accuracy shafts with high efficiency, low cost and low environmental impact. We will also develop a technique to derive the appropriate laser irradiation conditions quickly and systematically for shafts with various shapes and dimensions. There are the other hardening techniques including the electric furnace method and the induction method. These methods require post-processing for deformation correction, whereas the proposed method uses a laser to achieve thermal deformation-free hardening, eliminating the need for the post-processing. As a result, an improvement in yield can be expected due to a reduction of the products that cannot be corrected after heat treatment, which had to be waste disposed with conventional methods. By using our method, the entire circumference of the shaft was hardened by using a ring-shaped laser beam and a cylindrical inner mirror. Here, the ring-shaped laser beam was formed by high-speed scanning of a spot shapelaser. In the present paper, the details of this system were introduced and some experimental results were described.

This content is only available via PDF.
You do not currently have access to this content.