Abstract

In the cutting of Ti-6Al-4V alloy, the cutting speed is limited as a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. However, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face significantly suppresses both crater wear and flank wear. In addition, optimum texture structures and the mechanism of the texture effects in high-speed machining of Ti-6Al-4V alloy were discussed.

This content is only available via PDF.
You do not currently have access to this content.