Abstract

Nanofluids are being evaluated as alternative heat transfer fluids, and thus their behavior during storage or low velocity applications in which natural convection can be significant has to be known and documented. Buoyancy induced flows in rectangular enclosures using nanofluids can be studied experimentally using thermocouples, thermistors, surface heat flux sensors, and ultrasound thermometry. The effects of the mass fraction concentration of nanoparticles, the enclosure aspect ratio, and the inclination have been studied experimentally, but more could be done. The opacity of nanofluids does not permit the use of particle image velocimetry, laser induced fluorescence, or any other means of flow visualization or visual temperature measurement of the local fluid temperature. However, the temperature field can be observed using a non-invasive method such as ultrasound thermometry. The experimental enclosure here was validated using water as the initial fluid; measured values of the local fluid temperature were compared with numerical simulations utilizing commercial software. Nanofluid mass fractions of 10% and 25% were used for comparative purposes to study the effects of concentration on the temperature field. Buoyancy force reversal effects were witnessed in both 10% and 25% concentrations. The nanofluid also prolonged the multicellular effects that occur in buoyancy inversion flows. A Rayleigh number inversion was observed with the 25% mass fraction nanofluid. The multicellular regime transitions to a boundary layer regime at about Ra = 1 × 107 when the aspect ratio is 2.625 and at about Ra = 2 × 108 when the aspect ratio is 1.000 for different concentrations of nanofluid. The observations could be physically explained. The current work confirms that temperature measurements of the flow field can be made to assess convective regimes and flow phenomena that induce significant temperature variations. The use of ultrasound thermometry is successfully demonstrated for opaque nanofluid.

References

1.
Keblinski
,
P.
,
Eastman
,
J. A.
, and
Cahill
,
D. G.
, “
Nanofluids for Thermal Transport
,”
Mater. Today
, Vol.
8
, No.
6
, pp.
36
44
. https://doi.org/10.1016/S1369-7021(05)70936-6
2.
Wang
,
X. Q.
and
Majumdar
,
A.
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
, Vol.
46
,
2007
, pp.
1
19
. https://doi.org/10.1016/j.ijthermalsci.2006.06.010
3.
Trisaksri
,
V.
, and
Wongwises
,
S.
, “
Critical Review of Heat Transfer Characteristics of Nanofluids
,”
Renewable Sustainable Energy Rev.
, Vol.
11
, No. 3, pp.
512
523
. https://doi.org/10.1016/j.rser.2005.01.010
4.
Tong
,
W.
, “
Aspect Ratio Effect on Natural Convection in Water Near Its Density Maximum Temperature
,”
Int. J. Heat Fluid Flow
, Vol.
20
,
1999
, pp.
624
633
. https://doi.org/10.1016/S0142-727X(99)00027-2
5.
Fusegi
,
T.
, and
Hyun
,
J. M.
, “
Laminar and Transitional Natural Convection in an Enclosure with Complex and Realistic Conditions
,”
Int. J. Heat Fluid Flow
, Vol.
15
,
1994
, pp.
258
268
. https://doi.org/10.1016/0142-727X(94)90011-6
6.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
46
,
2003
, pp.
3639
3653
. https://doi.org/10.1016/S0017-9310(03)00156-X
7.
Bairi
,
A.
,
Laraqi
,
N.
, and
Garcia de Maria
,
J. M.
, “
Numerical and Experimental Study of Natural Convection in Tilted Parallelepipedic Cavities for Large Rayleigh Numbers
,”
Exp. Therm. Fluid Sci.
, Vol.
31
, No.
4
,
2007
, pp.
309
324
. https://doi.org/10.1016/j.expthermflusci.2006.04.017
8.
Hsieh
,
K. J.
, and
Lien
,
F. S.
, “
Numerical Modeling of Buoyancy-Driven Turbulent Flows in Enclosures
,”
Int. J. Heat Fluid Flow
, Vol.
25
,
2004
, pp.
659
670
. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.023
9.
Jou
,
R. Y.
, and
Tzeng
,
S. C.
, “
Numerical Research of Natural Convective Heat Transfer Enhancement Filled with Nanofluids in Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
, Vol.
33
,
2006
, pp.
727
736
. https://doi.org/10.1016/j.icheatmasstransfer.2006.02.016
10.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
, “
Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids
,”
Phys. Fluids
, Vol.
16
,
2004
, p. 2395. https://doi.org/10.1063/1.1739247
11.
Wen
,
D.
, and
Ding
,
Y.
, “
Formulation of Nanofluids for Natural Convective Heat Transfer Applications
,”
Int. J. Heat Fluid Flow
, Vol.
26
,
2005
, pp.
855
864
. https://doi.org/10.1016/j.ijheatfluidflow.2005.10.005
12.
Xuan
,
Y.
, and
Roetzel
,
W.
, “
Conceptions for Heat Transfer Correlation of Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
43
,
2000
, pp.
3701
3707
. https://doi.org/10.1016/S0017-9310(99)00369-5
13.
Buongiorno
,
J.
, “
Convective Transport in Nanofluids
,”
J. Heat Transfer
, Vol.
128
,
2006
, pp.
240
250
. https://doi.org/10.1115/1.2150834
14.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S
, and
Eastman
,
J. A.
, “
Mechanisms of Heat Flow in Suspensions of Nano-sized Particles
,”
Int. J. Heat Mass Transfer
, Vol.
45
,
2002
, pp.
855
863
. https://doi.org/10.1016/S0017-9310(01)00175-2
15.
Said
,
M. A.
, and
Agarwal
,
R. K.
, “
Numerical Simulation of Natural Convection Heat Transfer in Nanofluids
,”
Proceedings of the 38th AIAA Thermophysics Conference
,
Toronto, ON
, June 6–9, 2005.
16.
Nnanna
,
A. G. A.
,
Fistrovich
,
T.
,
Malinski
,
K.
, and
Choi
,
S. U. S.
, “
Thermal Transport in Buoyancy-Driven Nanofluids
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE2004)
,
Anaheim, California
, November 13–19, 2004, pp.
571
578
.
17.
Nansteel
,
M. W.
,
Medjani
,
K.
, and
Lin
,
D. S.
, “
Natural Convection of Water near Its Density Maximum in a Rectangular Enclosure: Low Rayleigh Number Calculations
,”
Phys. Fluids
, Vol.
30
,
1987
, pp.
312
317
. https://doi.org/10.1063/1.866379
18.
Gebhart
,
B.
,
Jaluria
,
Y.
,
Mahajan
,
R. L.
, and
Sammakia
,
B.
,
Buoyancy-Induced Flows and Transport
,
Hemisphere
,
New York
,
1988
.
19.
Wen
,
D.
, and
Ding
,
Y.
, “
Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids)
,”
IEEE Trans. Nanotechnol.
, Vol.
5
, No.
3
,
2006
, pp.
220
227
. https://doi.org/10.1109/TNANO.2006.874045
20.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
, “
Natural Convection of Nano-fluids
,”
Heat Mass Transfer
, Vol.
39
,
2003
, pp.
775
784
. https://doi.org/10.1007/s00231-002-0382-z
21.
Heris
,
Z.
,
Etemad
,
S. Gh.
, and
Nasr Esfahany
,
M.
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
, Vol.
33
, No.
4
,
2006
, pp.
529
535
. https://doi.org/10.1016/j.icheatmasstransfer.2006.01.005
22.
Wong
,
K. V.
,
Bonn
,
B.
,
Vu
,
S.
, and
Samedi
,
S.
, “
Study of Nanofluid Natural Convection Phenomena in Rectangular Enclosures
,”
Proceedings of IMECE 2007, ASME 2007 International Mechanical Engineering Congress and Exposition (IMECE2007)
, November 11–17, 2007,
Seattle, WA
.
23.
Fife
,
S.
,
Andereck
,
C. D.
, and
Rahal
,
S.
, “
Ultrasound Thermometry in Transparent and Opaque Fluids
,”
Exp. Fluids
, Vol.
35
,
2003
, pp.
152
158
. https://doi.org/10.1007/s00348-003-0633-x
24.
Wong
,
K. V.
, and
Bhaskar
,
T.
, “
Transport Properties of Alumina Nanofluids
,”
Proceedings of IMECE 2006, ASME 2006 International Mechanical Engineering Congress and Exposition (IMECE2006)
, November 5–10, 2006,
Chicago, Illinois
.
25.
Catton
,
I.
, “
Natual Convection in Enclosures
,”
J. Heat Transfer
, Vol.
6
,
1978
, pp.
13
43
.
26.
Arnold
,
J. N.
,
Catton
,
I.
, and
Edwards
,
D. K.
, “
Experimental Investigation of Natural Convection in Inclined Rectangular Regions of Differing Aspects Ratios
,”
J. Heat Transfer
, Vol.
98
,
1978
, pp.
67
71
. https://doi.org/10.1115/1.3450472
27.
Zhong
,
Z. Y.
,
Lloyd
,
J. R.
, and
Yang
,
K. T.
, “
Variable-Property Natural Convection in Tilted Square Cabities
,”
Numerical Methods in Thermal Problems
, Vol.
111
,
R. W.
Lewis
,
J. A.
Johnson
, and
W. R.
Smith
, Eds.,
Pineridge, Swansea
,
UK
,
1983
, pp.
968
979
.
28.
Kakac
,
S.
, and
Yener
,
Y.
,
Convective Heat Transfer
,
CRC
,
Boca Raton, FL
,
1995
, pp.
348
350
.
29.
Mcdonough
,
M. W.
, and
Eaghri
,
A.
, “
Experimental and Numerical Analyses of the Natural Convection of Water through Its Density Maximum in a Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
, Vol.
37
, No.
5
,
1994
, pp.
783
801
. https://doi.org/10.1016/0017-9310(94)90116-3
30.
Cioni
,
S.
,
Ciliberto
,
S.
, and
Sommeria
,
J.
, “
Experimental Study of High-Rayleigh-Number Convection in Mercury and Water
,”
Dyn. Atmos. Oceans
, Vol.
24
,
1996
, pp.
117
127
. https://doi.org/10.1016/0377-0265(95)00453-X
31.
Inaba
,
H.
, “
Experimental Study of Natural Convection in an Inclined Air Layer
,”
Int. J. Heat Mass Transfer
, Vol.
27
,
1984
, pp.
1127
1139
. https://doi.org/10.1016/0017-9310(84)90040-1
32.
Leong
,
W. H.
,
Hollands
,
K. G. T.
, and
Brunger
,
A.
, “
Experimental Nusselt Numbers for a Cubical-Cavity Benchmark Problem in Natural Convection
,”
Int. J. Heat Mass Transfer
, Vol.
42
,
1998
, pp.
1979
1989
. https://doi.org/10.1016/S0017-9310(98)00299-3
This content is only available via PDF.
You do not currently have access to this content.