Abstract

A simple one step solution phase approach to synthesize copper nanofluids has been developed, involving simultaneous in situ synthesis of nanoparticles and their dispersion in the base fluid. Copper nitrate has been reduced using ascorbic acid in ethylene glycol under thermal as well as microwave conditions. Sodium lauryl sulfate has been used to control the size of the particle as well as to act as a stabilizing agent. The effect of ratio of the reactants, pH, power of microwave, reaction time, and dilution on the size of the particles has been studied using X-ray diffraction, transmission electron microscopy, and field-emission scanning electron microscopy. The characterization of the fluids has also been done using Fourier transform infrared spectrometry, ultraviolet-visible spectroscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The thermal conductivity and viscosity of the fluid were also measured at various particle concentrations. The copper particles in the fluid were found to have size less than 50nm and were well dispersed in the fluid. Thus this method was found to preserve the advantages of the polyol process and aqueous chemical reduction method as well. The fluid was stable up to 5 weeks under stationary conditions at room temperature. This method employs fast, inexpensive, extendible process for the synthesis of copper nanofluids and also overcomes the drawbacks of two step process.

References

1.
Kumar
,
S. A.
,
Meenakshi
,
K. S.
,
Narashimhan
,
B. R. V.
,
Srikanth
,
S.
, and
Arthanareeswaran
,
G.
, “
Synthesis and Characterization of Copper Nanofluid by a Novel One-Step Method
,”
Mater. Chem. Phys.
, Vol.
113
,
2009
, pp.
57
62
.
2.
Wang
,
X. Q.
and
Mujumdar
,
A. S.
, “
A Review on Nanofluids—Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
, Vol.
25
,
2008
, pp.
613
630
.
3.
Saidur
,
R.
,
Leong
,
K. Y.
, and
Mohammad
,
H. A.
, “
A Review on Applications and Challenges of Nanofluids
,”
Renewable Sustainable Energy Rev.
, Vol.
15
,
2011
, pp.
1646
1668
.
4.
Y.
Xuan
, and
Li
,
Q.
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
, Vol.
21
,
2000
, pp.
58
64
.
5.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
, Vol.
78
,
2001
, pp.
718
720
.
6.
Lo
,
C. H.
,
T.T.
Tsung
, and
Lin
,
H.M.
, “
Preparation of Silver Nanofluid by the Submerged Arc Nanoparticle Synthesis System (SANSS)
,”
J. Alloys Compd.
, Vol.
434–435
,
2007
, pp.
659
662
.
7.
Kim
,
H. J.
,
Bang
,
I. C.
, and
Onoe
,
J.
, “
Characteristic Stability of Bare Au-Water Nanofluids Fabricated by Pulsed Laser Ablation in Liquids
,”
Opt. Lasers Eng.
, Vol.
47
,
2009
, pp.
532
538
.
8.
Lo
,
C. H.
,
Tsung
,
T. T.
, and
Chen
,
L. C.
, “
Ni Nanomagnetic Fluid Prepared by Submerged Arc Nano Synthesis System (SANSS)
,”
JSME Int. J., Ser. B.
, Vol.
48
,
2005
, pp.
750
755
.
9.
Li
,
D.
,
Hong
,
B.
,
Fang
,
W.
,
Guo
,
Y.
, and
Lin
,
R.
, “
Preparation and Characterization of High Dispersion Silver Nanoparticles in Oils
,”
Ind. Eng. Chem. Res.
, Vol.
49
,
2010
, pp.
1697
1702
.
10.
Li
,
F.
,
Ding
,
Y.
,
Gao
,
P.
,
Xin
,
X.
, and
Zhong
,
L. W.
, “
Single-Crystal Hexagonal Disks and Rings of ZnO: Low-Temperature, Large-Scale Synthesis and Growth Mechanism
,”
Angew. Chem.
, Vol.
116
,
2004
, pp.
5350
5354
.
11.
Zhao
,
T.
,
Sun
,
R.
,
Yu
,
S.
,
Zhang
,
Z.
,
Zhou
,
L.
,
Huang
,
H.
, and
Du
,
R.
, “
Size Controlled Preparation of Silver Nanoparticles by a Modified Polyol Method
,”
Colloids Surf., A
, Vol.
366
,
2010
, pp.
197
202
.
12.
Chen
,
Y.
,
Liew
,
K. Y.
, and
Li
,
J.
, “
Size Controlled Synthesis of Ru Nanoparticles by Ethylene Glycol Reduction
,”
Mater. Lett.
,
2008
, Vol.
62
, pp.
1018
1021
.
13.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
, and
Keblinski
,
P.
, “
Nanofluids
,”
Encyclopedia of Nanoscience and Nanotechnology
,
H.
Nalwa
, Ed.,
American Scientific Publishers
,
New York
,
2004
, pp.
757
774
.
14.
Peterson
,
G. P.
and
Li
,
C. H.
, “
Heat and Mass Transfer in Fluids with Nanoparticles Suspensions
,”
Adv. Heat Transf.
, Vol.
39
,
2006
, pp.
257
376
.
15.
Das
,
S. K.
,
Choi
,
S. U. S.
,
Yu
,
W.
, and
Pradeep
,
T.
,
Nanofluids Science and Technology
,
John Wiley and Sons
,
New York
,
2008
, pp.
39
100
.
16.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
, Vol.
34
,
2004
, pp.
219
246
.
17.
Wang
,
L. Q.
and
Quintard
,
M.
, “
Nanofluids of the Future
,”
Advances in Transport Phenomena
,
Springer
,
New York
,
2009
, pp.
179
243
.
18.
Sobhan
,
C. B.
and
Peterson
,
G. P.
,
Microscale and Nanoscale Heat Transfer: Fundamentals and Engineering Applications
,
CRC
,
Boca Raton, FL
,
2008
, pp.
1
440
.
19.
Choi
,
S. U. S.
, “
Nanofluids: From Vision to Reality Through Research
,”
J. Heat Transf.
, Vol.
131
,
2009
, 033106.
20.
Chang
,
H.
,
Tsung
,
T. T.
,
Chen
,
L. C.
,
Yang
,
Y. C.
,
Lin
,
H. M.
,
Lin
,
C. K.
, and
Jwo
,
C. S.
, “
Nanoparticle Suspension Preparation Using the Arc Spray Nanoparticle Synthesis System Combined with Ultrasonic Vibration and Rotating Electrode
,”
Int. J. Adv. Manuf. Technol.
, Vol.
26
,
2005
, pp.
552
558
.
21.
Lo
,
C. H.
,
Tsung
,
T. T.
,
Chen
,
L. C.
,
C. H.
Su
, and
Lin
,
H.M.
, “
Fabrication of Copper Oxide Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS)
,”
J. Nanopart. Res.
, Vol.
7
,
2005
, pp.
313
320
.
22.
Lo
,
C. H.
,
Tsung
,
T. T.
, and
Chen
,
L. C.
, “
Shape-Controlled Synthesis of Cu-Based Nanofluid Using Submerged Arc Nanoparticle Synthesis System (SANSS)
,”
J. Cryst. Growth
, Vol.
277
,
2005
, pp.
636
642
.
23.
Zhu
,
H.
,
Lin
,
Y.
, and
Yin
,
Y.
, “
A Novel One-Step Chemical Method for Preparation of Copper Nanofluids
,”
J. Colloid Interface Sci.
, Vol.
277
,
2004
, pp.
100
103
.
24.
Manna
,
I.
, “
Synthesis, Characterization and Application of Nanofluid—An Overview
,”
J. Indian Inst. Sci.
, Vol.
89
,
2009
, pp.
21
33
.
25.
L.
Wang
, and
Wei
,
X.
, “
Nanofluids: Synthesis, Heat Conduction and Extension
,”
J. Heat Transf.
, Vol.
131
,
2009
, 033102.
26.
Wu
,
D.
,
Zhu
,
H.
,
Wang
,
L.
, and
Liu
,
L.
, “
Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity
,”
Curr. Nanosci.
, Vol.
5
,
2009
, pp.
103
112
.
27.
Wei
,
X.
,
Kong
,
T.
,
H.
Zhu
, and
Wang
,
L.
, “
CuS/Cu2S Nanofluids: Synthesis and Thermal Conductivity
,”
Int. J. Heat Mass Transf.
, Vol.
53
,
2010
, pp.
1841
1843
.
28.
Wei
,
X.
,
Zhu
,
H.
,
T.
Kong
, and
Wang
,
W.
, “
Synthesis and Thermal Conductivity of Cu2O Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
52
,
2009
, pp.
4371
4374
.
29.
Wei
,
X.
,
H.
Zhu
, and
Wang
,
L.
, “
CePO4 Nanofluids: Synthesis and Thermal Conductivity
,”
J. Thermophys. Heat Transf.
, Vol.
23
,
2009
, pp.
219
222
.
30.
Paul
,
G.
,
Pal
,
T.
, and
Manna
,
I.
, “
Thermo Physical Property Measurement of Nano Gold Dispersed Water Based Nanofluids Prepared by Chemical Precipitation Technique
,”
J. Colloid Interface Sci.
, Vol.
349
,
2010
, pp.
434
437
.
31.
Paul
,
G.
,
Chopkar
,
M.
,
Manna
,
I.
, and
Das
,
P. K.
, “
Techniques for Measuring the Thermal Conductivity of Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
, Vol.
14
,
2010
, pp.
1913
1924
.
32.
West
,
A. R.
,
Solid State Chemistry and Its Applications
,
John Wiley and Sons
,
Singapore
,
1989
, pp.
173
175
.
33.
Wu
,
S.
, “
Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC
,”
Mater. Lett.
, Vol.
61
,
2007
, pp.
1125
1129
.
34.
Wu
S.
, and
Ding
,
X.
, “
Preparation of Fine Copper Powder with Chemical Reduction Method and Its Application in MLCC
,”
IEEE Trans. Adv. Packag.
, Vol.
30
,
2007
, pp.
434
438
.
35.
Zhu
,
H.
,
Zhang
,
C.
, and
Yin
,
Y.
, “
Rapid Synthesis of Copper Nanoparticles by Sodium Hypophosphite Reduction in Ethylene Glycol Under Microwave Irradiation
,”
J. Cryst. Growth
, Vol.
270
,
2004
, pp.
722
728
.
36.
Sisman
,
I.
,
Tutunoglu
,
C.
, and
Aydin
,
A. O.
, “
Surfactant Assisted Polyol Preparation of Nickel Powders with Different Morphologies
,”
Cent. Eur. J. Chem.
, Vol.
6
,
2008
, pp.
253
257
.
37.
Lee
,
W.
,
Piao
,
L.
,
Park
,
C. H.
,
Lim
,
Y. S.
,
Do
,
Y. R.
,
Yoon
,
S.
, and
Kim
,
S. H.
, “
Facile Synthesis and Size Control of Spherical Aggregates Composed of Cu2O Nanoparticles
,”
J. Colloid Interface Sci.
, Vol.
342
,
2010
, pp.
198
201
.
38.
Xuan
Y.
, and
Li
,
Q.
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
, Vol.
21
,
2000
, pp.
58
64
.
39.
Bicer
M.
, and
Sisman
,
I.
, “
Controlled Synthesis of Copper Nano/Microstructures Using Ascorbic Acid in Aqueous CTAB Solution
,”
Powder Technol.
, Vol.
198
,
2010
, pp.
279
284
.
40.
Chopkar
,
M.
,
Das
P. K.
, and
Manna
,
I.
, “
Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications
,”
Scr. Mater.
, Vol.
55
,
2006
, pp.
549
552
.
41.
Murshed
,
S. M. S.
,
Leong
,
K. C.
, and
Yang
,
C.
, “
Investigations of Thermal Conductivity and Viscosity of Nanofluid
,”
Int. J. Therm. Sci.
, Vol.
47
,
2008
, pp.
560
568
.
42.
Yu
,
W.
,
Xie
,
H.
,
Chen
,
L.
, and
Li
,
Y.
, “
Investigation of Thermal Conductivity and Viscosity of Ethylene Glycol Based ZnO Nanofluid
,”
Thermochim. Acta
, Vol.
491
,
2009
, pp.
92
96
.
43.
Li
,
D.
,
Xie
,
W.
, and
Fang
,
W.
, “
Preparation and Properties of Copper Oil Based Nanofluids
,”
Nanoscale Res. Lett.
, Vol.
6
, No.
373
,
2011
, pp.
1
7
.
This content is only available via PDF.
You do not currently have access to this content.