Abstract

In the present work, the effect of the addition of aluminum nanoparticles in concentrations varying from 0.001 to 0.5 vol. % on the cooling performance and quench severity of water during immersion quenching is investigated. The results of cooling curve analyses show that an increase in nanoparticle concentration increased the cooling rates at critical temperatures up to 0.05 vol. % and decreased them thereafter. The transition from the vapor blanket stage to the nucleate boiling stage was also altered by quenching in nanofluids. A finite difference heat transfer program was employed to generate cooling curves at different values of heat transfer coefficient from thermo-physical properties of the quench probe material. A Grossmann H quench severity versus cooling rate curve was established, and from this curve, the H factors of prepared nanofluids were estimated. An increase in nanoparticle concentration up to 0.05 vol. % resulted in an increase of the H value of water from 63 m−1 to 93 m−1, and any further increase in the concentration of nanoparticles resulted in a decrease in H. The results suggest both the enhancement and the deterioration of the cooling performance of water by the addition of aluminum nanoparticles.

References

1.
Totten
,
G. E.
,
Bates
.
C. E.
, and
Clinton
,
N. A.
,
Handbook of Quenching and Quenching Technology
,
ASM International
,
Materials Park, OH
,
1993
.
2.
Simsir
,
C.
and
Gur
,
C. H.
, “
Simulation of Quenching
,”
Handbook of Thermal Process Modeling of Steels
,
C. H.
Gur
and
J.
Pan
, Eds.,
CRC Press
,
Boca Raton, FL
,
2008
, pp.
341
426
.
3.
Lotfi
,
H.
and
Shafii
,
M. B.
, “
Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,”
Int. J. Therm. Sci.
, Vol.
48
,
2009
, pp.
2215
2220
. https://doi.org/10.1016/j.ijthermalsci.2009.04.009
4.
Park
,
H. S.
,
Shiferaw
,
D.
,
Sehgal
,
B. R.
,
Kim
,
D. K.
, and
Muhammed
,
M.
, “
Film Boiling Heat Transfer on a High Temperature Sphere in Nanofluid
,”
ASME 2004 Heat Transfer/Fluids Engineering Summer Conference (HT-FED2004)
, Heat Transfer Division and Fluids Engineering Division,
Charlotte
,
NC
, July 11–15,
2004
.
5.
Huang
,
C. K.
,
Lee
,
C. W.
, and
Wang
,
C. K.
, “
Boiling Enhancement by TiO2, Nanoparticle Deposition
,”
Int. J. Heat Mass Transfer
, Vol.
54
,
2011
, pp.
4895
4903
. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001
6.
Stutz
,
B.
,
Morceli
,
C. H. S.
,
Silva
,
M. F.
,
Cioulachtjian
,
S.
, and
Bonjour
,
J.
, “
Influence of Nanoparticle Surface Coating on Pool Boiling
,”
Exp. Therm. Fluid Sci
., Vol.
35
,
2011
, pp.
1239
1249
. https://doi.org/10.1016/j.expthermflusci.2011.04.011
7.
Prabhu
,
K. N.
and
Fernades
,
P.
, “
Nanoquenchants for Industrial Heat Treatment
,”
J. Mater. Eng. Perform
., Vol.
17
,
2008
, pp.
101
103
. https://doi.org/10.1007/s11665-007-9124-1
8.
Jagannath
,
V.
and
Prabhu
,
K. N.
, “
Severity of Quenching and Kinetics of Wetting of Nanofluids
,”
J. ASTM Int.
, Vol.
6
,
2009
, pp.
1
9
. https://doi.org/10.1520/JAI101800
9.
Gestwa
,
W.
and
Przylecka
,
M.
, “
The Modification of Sodium Polyacrylate Water Solution Cooling Properties by Al2O3
,”
Adv. Mater. Sci. Eng.
, Vol.
2010
,
2010
, pp.
1
5
. https://doi.org/10.1155/2010/949853
10.
Chakrabority
,
S.
,
Chakrabority
,
A.
,
Das
,
S.
,
Mukherjee
,
T.
,
Bhattacharjee
,
D.
, and
Ray
,
R. K.
, “
Application of Water Based-TiO2 Nano-fluid for Cooling of Hot Steel Plate
,”
ISIJ Int.
, Vol.
50
,
2010
, pp.
124
127
. https://doi.org/10.2355/isijinternational.50.124
11.
Babu
,
K.
and
Kumar
,
T. S. P.
, “
Effect of CNT Concentration and Agitation on Surface Heat Flux during Quenching in CNT Nanofluids
,”
Int. J. Heat Mass Transfer
, Vol.
54
,
2011
, pp.
106
117
. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.003
12.
ISO 9950,
1995
, “
Industrial Quenching Oils—Determination of Cooling Characteristics—Nickel-Alloy Probe Test Method
,” Draft International Standard ISO/DIS 9950, International Organization for Standardization, 1995.
13.
Liscic
,
B.
,
Tensi
,
H. M.
,
Totten
,
G. E.
, and
Webster
,
G. M.
, “
Non-lubricating Process Fluids: Steel Quenching Technology
,”
Fuels and Lubricants Handbook: Technology, Properties, Performance and Testing
,
G. E.
Totten
,
S. R.
Westbrook
, and
R. J.
Shah
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2003
, pp.
587
634
.
14.
Totten
,
G. E.
,
Webster
,
G. M.
,
Bates
,
C. E.
,
Han
,
S. W.
, and
Kang
,
S. H.
, “
Limitations of the Use of Grossman Quench Severity Factors
,”
17th Heat Treating Society Conference Proceedings Including the 1st International Induction Heat Treating Symposium
,
D.
Milam
,
D.
Poteet
,
G.
Pfaffmann
,
W.
Albert
,
A.
Muhlbauer
, and
V.
Rudnev
, Eds.,
ASM International
,
Materials Park, OH
,
1997
, pp.
411
422
.
15.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, “
Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
, Vol.
45
,
2002
, pp.
855
863
. https://doi.org/10.1016/S0017-9310(01)00175-2
16.
Ramesh
,
G.
, and
Prabhu
,
K. N.
, “
Characterization of Water Base Copper Nanoquenchants by Standard Cooling Curve Analysis
,”
International Heat Treatment and Surface Engineering
, Vol.
5
,
2011
, pp.
165
170
.
This content is only available via PDF.
You do not currently have access to this content.