Abstract

Eccentrically-loaded single-edge crack tension, ESE(T), specimens made of A36 structural steel were tested over a wide range in stress ratios (R=0.1 and 0.7) in laboratory air. Two test methods were used: (1) ASTM Standard E647 load-reduction method and (2) compression precracking. After compression precracking (CP), three different loading sequences were used: (1) constant amplitude (CPCA), (2) load reduction (CPLR), and (3) constant stress-intensity factor (CPCK). The crack-compliance method was used to determine that the specimens had no residual stresses; and that the effects of tensile residual stresses from compression precracking dissipated in about 2 compressive plastic-zone sizes. Agreement was found between the A36 and TC-128B steel ΔK-rate data tested at both low and high stress ratio (R) conditions. At R=0.1 loading, the CPCA and CPLR tests generated lower thresholds and faster rates than using the standard ASTM load-reduction method. All load-reduction tests exhibited an accumulation of debris at the crack front near threshold conditions. A crack-closure analysis was preformed to calculate the effective stress-intensity factor range (ΔKeff) against rate using measured 1 % offset (OP1) values for all R=0.1 tests. The ΔKeff-rate data correlated well with the high-R results.

References

1.
ASTM E-647.
2006
, “
Standard Test Method for Measurement of Fatigue Crack Growth Rates
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
615
657
.
2.
Suresh
,
S.
, “
Crack Initiation in Cyclic Compression and Its Application
,”
Eng. Fract. Mech.
, Vol.
21
,
1985
, pp.
453
463
. https://doi.org/10.1016/S0013-7944(85)80038-2
3.
Pippan
,
R.
,
Plöchl
,
L.
,
Klanner
,
F.
, and
Stüwe
,
H. P.
, “
The Use of Fatigue Specimens Precracked in Compression for Measuring Threshold Values and Crack Growth
,”
J. Test. Eval.
, Vol.
22
,
1994
, p. 98. https://doi.org/10.1520/JTE12641J
4.
Forth
,
S. C.
,
Newman
,
J. C.
, Jr.
, and
Forman
,
R. G.
, “
On Generating Fatigue Crack Growth Thresholds
,”
Int. J. Fatigue
, Vol.
25
,
2003
, pp.
9
15
. https://doi.org/10.1016/S0142-1123(02)00066-X
5.
Newman
,
J. C.
, Jr.
,
Schneider
,
J.
,
Daniel
,
A.
, and
McKnight
,
D.
, “
Compression Precracking to Generate Near Threshold Fatigue-Crack-Growth Rates in Two Aluminum Alloys
,”
Int. J. Fatigue
, Vol.
27
,
2005
, pp.
1432
1440
. https://doi.org/10.1016/j.ijfatigue.2005.07.006
6.
Ruschau
,
J. J.
, and
Newman
,
J. C.
, Jr.
, “
Compression Precracking to Generate Near Threshold Fatigue-Crack-Growth Rates in an Aluminum and Titanium Alloy
,”
J. ASTM Int.
, Vol.
5
, No.
7
,
2008
. https://doi.org/10.1520/JAI101623
7.
Yamada
,
Y.
, and
Newman
,
J. C.
, Jr.
, “
Crack Closure Behavior of 2324-T39 Aluminum Alloy Near Threshold Conditions for High Load Ratio and Constant Kmax Tests
”,
Int. J. Fatigue
, Vol.
31
,
2009
, pp.
1780
1787
. https://doi.org/10.1016/j.ijfatigue.2008.11.010
8.
Newman
,
J. C.
, Jr.
,
Yamada
,
Y.
, and
Newman
,
J. A.
, “
Crack-Closure Behavior of 7050 Aluminum Alloy near Threshold Conditions for Wide Range in Load Ratios and Constant Kmax Tests
,”
J. ASTM Int.
, Vol.
7
, No.
4
,
2010
. https://doi.org/10.1520/JAI102490
9.
Yamada
,
Y
and
Newman
,
J. C.
, Jr.
, “
Crack Closure under High Load-Ratio Conditions for Inconel 718 Near Threshold Behavior
”,
Eng. Fract. Mech.
, Vol.
76
,
2009
, pp.
209
220
. https://doi.org/10.1016/j.engfracmech.2008.09.009
10.
James
,
M. A.
,
Forth
,
S. C.
, and
Newman
,
J. A.
, “
Load History Effects Resulting from Compression Precracking
,”
ASTM Spec. Tech. Publ.
, Vol.
1461
,
2005
, pp.
43
59
.
11.
Yamada
,
Y.
,
Newman
,
J. C.
, III
, and
Newman
,
J. C.
, Jr.
, “
Elastic-Plastic Finite-Element Analyses of Compression Precracking and Its Influence on Subsequent Fatigue-Crack Growth
,”
J. ASTM Int.
, Vol.
5
, No.
8
,
2008
. https://doi.org/10.1520/JAI101617
12.
McKeighan
,
P. C.
,
Feiger
,
J. H.
, and
Riddell
,
W. T.
, “
Fatigue Crack Growth Rate Behavior of Tank Car Steel TC-128B
,”
Iron Steelmaker
, Vol.
2
, No.
5
,
2002
, pp.
73
78
.
13.
Donald
,
K.
, “
User’s Reference Manual for Automated Fatigue Crack Growth
,” Vol.
2.65
,
Fracture Technology Associates
,
LLC
,
Bethlehem, PA
,
2007
.
14.
Lados
,
D. A.
,
Apelian
,
D.
, and
Donald
,
J. K.
, “
Fracture Mechanics Analysis for Residual Stress and Crack Closure Corrections
,”
Int. J. Fatigue
, Vol.
29
,
2006
, pp.
687
694
. https://doi.org/10.1016/j.ijfatigue.2006.07.002
15.
Donald
,
J. K.
, and
Lados
,
D. A.
, “
An Integrated Methodology for Separating Closure and Residual Stress Effects from Fatigue Crack Growth Rate Data
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
30
,
2006
, pp.
223
230
.
16.
Schindler
,
H. J.
,
Cheng
,
W.
, and
Finnie
,
I.
, “
Experimental Determination of Stress Intensity Factors Due to Residual Stresses
,”
Exp. Mech.
, Vol.
37
, No.
3
,
1997
, pp.
272
279
. https://doi.org/10.1007/BF02317418
17.
Elber
,
W.
, “
The Significance of Fatigue Crack Closure
,”
ASTM Spec. Tech. Publ.
, Vol.
486
,
1971
, pp.
230
242
.
18.
Newman
,
J. C.
, Jr.
, “
A Crack Opening Stress Equation for Fatigue Crack Growth
,”
Int. J. Fract.
, Vol.
24
,
1984
,
R131
Rl35
. https://doi.org/10.1007/BF00032686
19.
Newman
,
J. C.
, Jr.
,
Crews
,
J. H.
, Jr.
,
Bigelow
,
C. A.
, and
Dawicke
,
D. S.
, “
Variations of a Global Constraint Factor in Cracked Bodies Under Tension and Bending Loads
,”
ASTM Spec. Tech. Publ.
, Vol.
1244
,
1995
, pp.
21
42
.
20.
Solanki
,
K.
,
Daniewicz
,
S. R.
, and
Newman
,
J. C.
, Jr.
, ”
Finite Element Modeling of Plasticity-Induced Crack Closure with Emphasis on Geometry and Mesh Refinement Effects
“,
Eng. Fract. Mech.
, Vol.
70
,
2003
, pp.
1475
1489
. https://doi.org/10.1016/S0013-7944(02)00168-6
21.
Piascik
,
R. S.
, and
Newman
,
J. C.
, Jr.
, “
An Extended Compact Tension Specimen for Fatigue Crack Growth and Fracture Testing
,”
Int. J. Fract.
, Vol.
76
,
1996
, pp.
R43
R48
. https://doi.org/10.1007/BF00048293
22.
Piascik
,
R. S.
,
Newman
,
J. C.
, Jr.
, and
Underwood
,
J. H.
, “
The Extended Compact Tension Specimen
,”
Fatigue Fract. Eng. Mater. Struct.
, Vol.
20
, No.
4
,
1997
, pp.
559
563
. https://doi.org/10.1111/ffe.1997.20.issue-4
23.
Srawley
,
J. E.
, ”
Wide Range Stress Intensity Factor Expressions for ASTM Method E 399 Standard Fracture Toughness Specimens
, “
Int. J. Fract.
, Vol.
12
,
1976
, pp.
475
476
.
24.
Newman
,
J. C.
, Jr.
, “
Stress Analysis of the Compact Specimen Including the Effects of Pin Loading
,” Fracture Analysis,
ASTM Spec. Tech. Publ.
,
560
,
1974
, pp.
105
121
.
This content is only available via PDF.
You do not currently have access to this content.